We numerically investigate the slow dynamics of a binary mixture of ultrasoft particles interacting with the generalized Hertzian potential. If the softness parameter, α, is small, the particles at high densities start penetrating each other, form clusters, and eventually undergo the glass transition. We find multiple cluster-glass phases characterized by a different number of particles per cluster, whose boundary lines are sharply separated by the cluster size. Anomalous logarithmic slow relaxation of the density correlation functions is observed in the vicinity of these glass-glass phase boundaries, which hints the existence of the higher-order dynamical singularities predicted by the mode-coupling theory. Deeply in the cluster glass phases, it is found that the dynamics of a single particle is decoupled from that of the collective fluctuations.

1.
C. N.
Likos
, “
Soft matter with soft particles
,”
Soft Matter
2
,
478
(
2006
).
2.
G.
Malescio
, “
Complex phase behaviour from simple potentials
,”
J. Phys.: Condens. Matter
19
,
073101
(
2007
).
3.
C.
Likos
,
A.
Lang
,
M.
Watzlawek
, and
H.
Löwen
, “
Criterion for determining clustering versus reentrant melting behavior for bounded interaction potentials
,”
Phys. Rev. E
63
,
031206
(
2001
).
4.
F. H.
Stillinger
, “
Phase transitions in the Gaussian core system
,”
J. Chem. Phys.
65
,
3968
(
1976
).
5.
S.
Prestipino
,
F.
Saija
, and
P. V.
Giaquinta
, “
Phase diagram of the Gaussian-core model
,”
Phys. Rev. E
71
,
050102
(
2005
).
6.
J. C.
Pàmies
,
A.
Cacciuto
, and
D.
Frenkel
, “
Phase diagram of Hertzian spheres
,”
J. Chem. Phys.
131
,
044514
(
2009
).
7.
Y. L.
Zhu
and
Z. Y.
Lu
, “
Phase diagram of spherical particles interacted with harmonic repulsions
,”
J. Chem. Phys.
134
,
044903
(
2011
).
8.
W. L.
Miller
and
A.
Cacciuto
, “
Two-dimensional packing of soft particles and the soft generalized Thomson problem
,”
Soft Matter
7
,
7552
7559
(
2011
).
9.
W.
Klein
,
H.
Gould
,
R. A.
Ramos
,
I.
Clejan
, and
A. I.
Mel’cuk
, “
Repulsive potentials, clumps and the metastable glass phase
,”
Physica A
205
,
738
746
(
1994
).
10.
B.
Mladek
,
D.
Gottwald
,
G.
Kahl
,
M.
Neumann
, and
C.
Likos
, “
Formation of polymorphic cluster phases for a class of models of purely repulsive soft spheres
,”
Phys. Rev. Lett.
96
,
045701
(
2006
).
11.
C. N.
Likos
,
B. M.
Mladek
,
D.
Gottwald
, and
G.
Kahl
, “
Why do ultrasoft repulsive particles cluster and crystallize? Analytical results from density-functional theory
,”
J. Chem. Phys.
126
,
224502
(
2007
).
12.
B. M.
Mladek
,
D.
Gottwald
,
G.
Kahl
,
M.
Neumann
, and
C. N.
Likos
, “
Clustering in the absence of attractions: Density functional theory and computer simulations
,”
J. Phys. Chem. B
111
,
12799
12808
(
2007
).
13.
E.
Lascaris
,
G.
Malescio
,
S.
Buldyrev
, and
H.
Stanley
, “
Cluster formation, waterlike anomalies, and re-entrant melting for a family of bounded repulsive interaction potentials
,”
Phys. Rev. E
81
,
031201
(
2010
).
14.
F.
Sciortino
and
E.
Zaccarelli
, “
Computational materials science: Soft heaps and clumpy crystals
,”
Nature
493
,
30
31
(
2013
).
15.
K.
Zhang
,
P.
Charbonneau
, and
B. M.
Mladek
, “
Reentrant and isostructural transitions in a cluster-crystal former
,”
Phys. Rev. Lett.
105
,
245701
(
2010
).
16.
K.
Zhang
and
P.
Charbonneau
, “
[N]pT Monte Carlo simulations of the cluster-crystal-forming penetrable sphere model
,”
J. Chem. Phys.
136
,
214106
(
2012
).
17.
A.
Moreno
and
C.
Likos
, “
Diffusion and relaxation dynamics in cluster crystals
,”
Phys. Rev. Lett.
99
,
107801
(
2007
).
18.
D.
Coslovich
,
L.
Strauss
, and
G.
Kahl
, “
Hopping and microscopic dynamics of ultrasoft particles in cluster crystals
,”
Soft Matter
7
,
2127
(
2011
).
19.
M.
Montes-Saralegui
,
A.
Nikoubashman
, and
G.
Kahl
, “
Hopping and diffusion of ultrasoft particles in cluster crystals in the explicit presence of a solvent
,”
J. Phys.: Condens. Matter
25
,
195101
(
2013
).
20.
V.
Moshchalkov
,
M.
Menghini
,
T.
Nishio
,
Q. H.
Chen
,
A. V.
Silhanek
,
V. H.
Dao
,
L. F.
Chibotaru
,
N. D.
Zhigadlo
, and
J.
Karpinski
, “
Type-1.5 superconductivity
,”
Phys. Rev. Lett.
102
,
117001
(
2009
).
21.
F.
Cinti
,
P.
Jain
,
M.
Boninsegni
,
A.
Micheli
,
P.
Zoller
, and
G.
Pupillo
, “
Supersolid droplet crystal in a dipole-blockaded gas
,”
Phys. Rev. Lett.
105
,
135301
(
2010
).
22.
F.
Cinti
,
T.
Macrì
,
W.
Lechner
,
G.
Pupillo
, and
T.
Pohl
, “
Defect-induced supersolidity with soft-core bosons
,”
Nat. Commun.
5
,
3235
(
2014
).
23.
R.
Díaz-Méndez
,
F.
Mezzacapo
,
F.
Cinti
,
W.
Lechner
, and
G.
Pupillo
, “
Monodisperse cluster crystals: Classical and quantum dynamics
,”
Phys. Rev. E
92
,
052307
(
2015
).
24.
R.
Díaz-Méndez
,
F.
Mezzacapo
,
W.
Lechner
,
F.
Cinti
,
E.
Babaev
, and
G.
Pupillo
, “
Glass transitions in monodisperse cluster-forming ensembles: Vortex matter in type-1.5 superconductors
,”
Phys. Rev. Lett.
118
,
067001
(
2017
).
25.
A.
Angelone
,
F.
Mezzacapo
, and
G.
Pupillo
, “
Superglass phase of interaction-blockaded gases on a triangular lattice
,”
Phys. Rev. Lett.
116
,
135303
(
2016
).
26.
D. A.
Lenz
,
R.
Blaak
,
C. N.
Likos
, and
B. M.
Mladek
, “
Microscopically resolved simulations prove the existence of soft cluster crystals
,”
Phys. Rev. Lett.
109
,
228301
(
2012
).
27.
M.
Bernabei
,
P.
Bacova
,
A. J.
Moreno
,
A.
Narros
, and
C. N.
Likos
, “
Fluids of semiflexible ring polymers: Effective potentials and clustering
,”
Soft Matter
9
,
1287
(
2013
).
28.
M. Z.
Slimani
,
P.
Bacova
,
M.
Bernabei
,
A.
Narros
,
C. N.
Likos
, and
A. J.
Moreno
, “
Cluster glasses of semiflexible ring polymers
,”
ACS Macro Lett.
3
,
611
616
(
2014
).
29.
L.
Berthier
and
T. A.
Witten
, “
Compressing nearly hard sphere fluids increases glass fragility
,”
Europhys. Lett.
86
,
10001
(
2009
).
30.
L.
Berthier
and
T. A.
Witten
, “
Glass transition of dense fluids of hard and compressible spheres
,”
Phys. Rev. E
80
,
021502
(
2009
).
31.
C. S.
O’Hern
,
L. E.
Silbert
,
A. J.
Liu
, and
S. R.
Nagel
, “
Jamming at zero temperature and zero applied stress: The epitome of disorder
,”
Phys. Rev. E
68
,
011306
(
2003
);
A.
Donev
,
S.
Torquato
,
F. H.
Stillinger
, and
R.
Connelly
, “
Comment on ‘Jamming at zero temperature and zero applied stress: The epitome of disorder
,’”
Phys. Rev. E
70
,
043301
(
2004
);
C. S.
O’Hern
,
L. E.
Silbert
,
A. J.
Liu
, and
S. R.
Nagel
, “
Reply to ‘Comment on ‘Jamming at zero temperature and zero applied stress: The epitome of disorder
,””
Phys. Rev. E
70
,
043302
(
2004
).
32.
M.
van Hecke
, “
Jamming of soft particles: Geometry, mechanics, scaling and isostaticity
,”
J. Phys.: Condens. Matter
22
,
033101
(
2010
).
33.
L.
Berthier
,
A.
Moreno
, and
G.
Szamel
, “
Increasing the density melts ultrasoft colloidal glasses
,”
Phys. Rev. E
82
,
060501
(
2010
).
34.
L.
Wang
,
Y.
Duan
, and
N.
Xu
, “
Non-monotonic pressure dependence of the dynamics of soft glass-formers at high compressions
,”
Soft Matter
8
,
11831
11838
(
2012
).
35.
C.
Zhao
,
K.
Tian
, and
N.
Xu
, “
New jamming scenario: From marginal jamming to deep jamming
,”
Phys. Rev. Lett.
106
,
125503
(
2011
).
36.
A.
Ikeda
and
K.
Miyazaki
, “
Glass transition of the monodisperse Gaussian core model
,”
Phys. Rev. Lett.
106
,
015701
(
2011
).
37.
A.
Ikeda
and
K.
Miyazaki
, “
Slow dynamics of the high density Gaussian core model
,”
J. Chem. Phys.
135
,
054901
(
2011
).
38.
A.
Ikeda
and
K.
Miyazaki
, “
Ultra-soft potential system as a mean-field model of the glass transition
,”
J. Phys. Soc. Jpn.
81
,
SA006
(
2012
).
39.
D.
Coslovich
,
A.
Ikeda
, and
K.
Miyazaki
, “
Mean-field dynamic criticality and geometric transition in the Gaussian core model
,”
Phys. Rev. E
93
,
042602
(
2016
).
40.
D.
Coslovich
,
M.
Bernabei
, and
A. J.
Moreno
, “
Cluster glasses of ultrasoft particles
,”
J. Chem. Phys.
137
,
184904
(
2012
).
41.
M.
Schmiedeberg
, “
Multiple reentrant glass transitions of soft spheres at high densities: Monotonicity of the curves of constant relaxation time in jamming phase diagrams depending on temperature over pressure and pressure
,”
Phys. Rev. E
87
,
052310
(
2013
).
42.
R.
Miyazaki
,
T.
Kawasaki
, and
K.
Miyazaki
, “
Cluster glass transition of ultrasoft-potential fluids at high density
,”
Phys. Rev. Lett.
117
,
165701
(
2016
).
43.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic Press
,
2001
).
44.
D.
Coslovich
and
A.
Ikeda
, “
Cluster and reentrant anomalies of nearly Gaussian core particles
,”
Soft Matter
9
,
6786
(
2013
).
45.
A.
Louis
,
P.
Bolhuis
, and
J.
Hansen
, “
Mean-field fluid behavior of the Gaussian core model
,”
Phys. Rev. E
62
,
7961
7972
(
2000
).
46.
A. J.
Archer
and
R.
Evans
, “
Binary Gaussian core model: Fluid-fluid phase separation and interfacial properties
,”
Phys. Rev. E
64
,
041501
(
2001
).
47.
A. J.
Archer
,
C. N.
Likos
, and
R.
Evans
, “
Binary star-polymer solutions: Bulk and interfacial properties
,”
J. Phys.: Condens. Matter
14
,
12031
12050
(
2002
).
48.
Y.
Katayama
,
T.
Mizutani
,
W.
Utsumi
,
O.
Shimomura
,
M.
Yamakata
, and
K.-i.
Funakoshi
, “
A first-order liquid-liquid phase transition in phosphorus
,”
Nature
403
,
170
173
(
2000
).
49.
P. H.
Poole
,
T.
Grande
,
C. A.
Angell
, and
P. F.
McMillan
, “
Polymorphic phase transitions in liquids and glasses
,”
Science
275
,
322
(
1997
).
50.
V.
Holten
,
C. E.
Bertrand
,
M. A.
Anisimov
, and
J. V.
Sengers
, “
Thermodynamics of supercooled water
,”
J. Chem. Phys.
136
,
094507
(
2012
).
51.
V. V.
Vasisht
,
S.
Saw
, and
S.
Sastry
, “
Liquid-liquid critical point in supercooled silicon
,”
Nat. Phys.
7
,
549
553
(
2011
).
52.
J.
Luo
,
L.
Xu
,
E.
Lascaris
,
H. E.
Stanley
, and
S. V.
Buldyrev
, “
Behavior of the widom line in critical phenomena
,”
Phys. Rev. Lett.
112
,
135701
(
2014
).
53.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids
(
Oxford University Press
,
Oxford
,
2009
).
54.
A. J.
Moreno
and
J.
Colmenero
, “
Anomalous dynamic arrest in a mixture of large and small particles
,”
Phys. Rev. E
74
,
021409
(
2006
).
55.
A. J.
Moreno
and
J.
Colmenero
, “
Relaxation scenarios in a mixture of large and small spheres: Dependence on the size disparity
,”
J. Chem. Phys.
125
,
164507
(
2006
).
56.
W.
Götze
and
L.
Sjögren
, “
Relaxation processes in supercooled liquids
,”
Rep. Prog. Phys.
55
,
241
376
(
1992
).
57.
E.
Zaccarelli
,
C.
Mayer
,
A.
Asteriadi
,
C. N.
Likos
,
F.
Sciortino
,
J.
Roovers
,
H.
Iatrou
,
N.
Hadjichristidis
,
P.
Tartaglia
,
H.
Löwen
, and
D.
Vlassopoulos
, “
Tailoring the flow of soft glasses by soft additives
,”
Phys. Rev. Lett.
95
,
268301
(
2005
);
[PubMed]
E.
Zaccarelli
,
I.
Saika-Voivod
,
S. V.
Buldyrev
,
A. J.
Moreno
,
P.
Tartaglia
, and
F.
Sciortino
, “
Gel to glass transition in simulation of a valence-limited colloidal system
,”
J. Chem. Phys.
124
,
124908
(
2006
).
[PubMed]
58.
L.
Fabbian
,
W.
Götze
,
F.
Sciortino
,
P.
Tartaglia
, and
F.
Thiery
, “
Ideal glass-glass transitions and logarithmic decay of correlations in a simple system
,”
Phys. Rev. E
59
,
R1347
R1350
(
1999
).
59.
L.
Fabbian
,
W.
Götze
,
F.
Sciortino
,
P.
Tartaglia
, and
F.
Thiery
, “
Erratum: Ideal glass-glass transitions and logarithmic decay of correlations in a simple system [Phys. Rev. E 59, R1347 (1999)]
,”
Phys. Rev. E
60
,
2430
(
1999
).
60.
K.
Dawson
,
G.
Foffi
,
M.
Fuchs
,
W.
Götze
,
F.
Sciortino
,
M.
Sperl
,
P.
Tartaglia
,
T.
Voigtmann
, and
E.
Zaccarelli
, “
Higher-order glass-transition singularities in colloidal systems with attractive interactions
,”
Phys. Rev. E
63
,
011401
(
2000
).
61.
W.
Götze
and
M.
Sperl
, “
Logarithmic relaxation in glass-forming systems
,”
Phys. Rev. E
66
,
011405
(
2002
).
62.
F.
Mallamace
,
P.
Gambadauro
,
N.
Micali
,
P.
Tartaglia
,
C.
Liao
, and
S.-H.
Chen
, “
Kinetic glass transition in a micellar system with short-range attractive interaction
,”
Phys. Rev. Lett.
84
,
5431
5434
(
2000
).
63.
W.-R.
Chen
,
S.-H.
Chen
, and
F.
Mallamace
, “
Small-angle neutron scattering study of the temperature-dependent attractive interaction in dense l64 copolymer micellar solutions and its relation to kinetic glass transition
,”
Phys. Rev. E
66
,
021403
(
2002
).
64.
S.-H.
Chen
,
W.-R.
Chen
, and
F.
Mallamace
, “
The glass-to-glass transition and its end point in a copolymer micellar system
,”
Science
300
,
619
622
(
2003
).
65.
K. N.
Pham
,
A. M.
Puertas
,
J.
Bergenholtz
,
S. U.
Egelhaaf
,
A.
Moussaïd
,
P. N.
Pusey
,
A. B.
Schofield
,
M. E.
Cates
,
M.
Fuchs
, and
W. C. K.
Poon
, “
Multiple glassy states in a simple model system
,”
Science
296
,
104
106
(
2002
).
66.
A. M.
Puertas
,
M.
Fuchs
, and
M. E.
Cates
, “
Comparative simulation study of colloidal gels and glasses
,”
Phys. Rev. Lett.
88
,
098301
(
2002
).
67.
E.
Zaccarelli
,
G.
Foffi
,
K. A.
Dawson
,
S. V.
Buldyrev
,
F.
Sciortino
, and
P.
Tartaglia
, “
Confirmation of anomalous dynamical arrest in attractive colloids: A molecular dynamics study
,”
Phys. Rev. E
66
,
041402
(
2002
).
68.
F.
Sciortino
,
P.
Tartaglia
, and
E.
Zaccarelli
, “
Evidence of a higher-order singularity in dense short-ranged attractive colloids
,”
Phys. Rev. Lett.
91
,
268301
(
2003
).
69.
H.
Cang
,
V. N.
Novikov
, and
M. D.
Fayer
, “
Logarithmic decay of the orientational correlation function in supercooled liquids on the Ps to Ns time scale
,”
J. Chem. Phys.
118
,
2800
(
2003
).
70.
H.
Cang
,
V. N.
Novikov
, and
M. D.
Fayer
, “
Experimental observation of a nearly logarithmic decay of the orientational correlation function in supercooled liquids on the picosecond-to-nanosecond time scales
,”
Phys. Rev. Lett.
90
,
197401
(
2003
).
71.
C.
Mayer
,
F.
Sciortino
,
C. N.
Likos
,
P.
Tartaglia
,
H.
Löwen
, and
E.
Zaccarelli
, “
Multiple glass transitions in star polymer mixtures: Insights from theory and simulations
,”
Macromolecules
42
,
423
434
(
2009
).
72.
A. K.
Kandar
,
J. K.
Basu
,
S.
Narayanan
, and
A.
Sandy
, “
Anomalous structural and dynamical phase transitions of soft colloidal binary mixtures
,”
Soft Matter
8
,
10055
(
2012
).
73.
G.
Das
,
N.
Gnan
,
F.
Sciortino
, and
E.
Zaccarelli
, “
Unveiling the complex glassy dynamics of square shoulder systems: Simulations and theory
,”
J. Chem. Phys.
138
,
134501
(
2013
).
74.
N.
Gnan
,
G.
Das
,
M.
Sperl
,
F.
Sciortino
, and
E.
Zaccarelli
, “
Multiple glass singularities and isodynamics in a core-softened model for glass-forming systems
,”
Phys. Rev. Lett.
113
,
258302
(
2014
).
75.
A. J.
Moreno
and
J.
Colmenero
, “
Is there a higher-order mode coupling transition in polymer blends?
,”
J. Chem. Phys.
124
,
184906
(
2006
).
76.
T.
Sentjabrskaja
,
E.
Zaccarelli
,
C.
De Michele
,
F.
Sciortino
,
P.
Tartaglia
,
T.
Voigtmann
,
S. U.
Egelhaaf
, and
M.
Laurati
, “
Anomalous dynamics of intruders in a crowded environment of mobile obstacles
,”
Nat. Commun.
7
,
11133
(
2016
).
77.
M.
Lagi
,
P.
Baglioni
, and
S.-H.
Chen
, “
Logarithmic decay in single-particle relaxation of hydrated lysozyme powder
,”
Phys. Rev. Lett.
103
,
108102
(
2009
).
78.
X.-Q.
Chu
,
M.
Lagi
,
E.
Mamontov
,
E.
Fratini
,
P.
Baglioni
, and
S.-H.
Chen
, “
Experimental evidence of logarithmic relaxation in single-particle dynamics of hydrated protein molecules
,”
Soft Matter
6
,
2623
(
2010
).
79.
X.-Q.
Chu
,
E.
Mamontov
,
H.
O’Neill
, and
Q.
Zhang
, “
Temperature dependence of logarithmic-like relaxational dynamics of hydrated tRNA
,”
J. Phys. Chem. Lett.
4
,
936
942
(
2013
).
You do not currently have access to this content.