A vibrational state-specific model for dissociation and recombination reactions within the direct simulation Monte Carlo method is introduced to study the energy level dynamics of the O2 + O system. The state-resolved cross sections for vibrational relaxation and dissociation reactions are obtained from a rotationally averaged quasi-classical trajectory database based on the Varandas and Pais O2(  3Σg)+O(  3P) potential energy surface. A two-step binary collision framework is outlined to characterize the vibrational state-resolved recombination probabilities, which are constrained by detailed balance for orbiting pair formation, and microscopic reversibility applied to the dissociation cross sections for orbiting pair stabilization. The vibrational state-to-state (STS) model is compared to the phenomenological total collision energy (TCE) and quantum kinetic (QK) models through a series of 0-d non-equilibrium relaxation calculations. A quasi-steady state (QSS) region is established in the vibrational temperature profiles of the TCE, QK, and STS models under non-equilibrium heating. This QSS region is a result of the competition between vibrational relaxation by vibrational-translational (VT) transitions and O2 dissociation. The duration of QSS predicted by the STS model is approximately ten and four times that of the TCE and QK model predictions, respectively, and the total time to reach equilibrium is approximately 3.5 times that of the TCE model and 1.5 times that of the QK model. A distinct QSS region is not observed in the non-equilibrium cooling case. This is attributed to the relatively rapid VT transitions that work to equilibrate the vibrational energy distribution upon recombination, which is comparatively slow. The total time to reach equilibrium by the STS model in the non-equilibrium cooling case is five times and three times greater than those of the QK and TCE models, respectively.

1.
I.
Borges Sebastião
and
A.
Alexeenko
, “
Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model
,”
Phys. Fluids
28
,
107103
(
2016
).
2.
M.
Panesi
,
A.
Munafò
,
T.
Magin
, and
R.
Jaffe
, “
Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method
,”
Phys. Rev. E
90
,
013009
(
2014
).
3.
A.
Munafo
,
M.
Panesi
,
R.
Jaffe
,
G.
Colonna
,
A.
Bourdon
, and
T.
Magin
, “
QCT-based vibrational collisional models applied to nonequilibrium nozzle flows
,”
Eur. Phys. J. D
66
,
188
(
2012
).
4.
A.
Guy
,
A.
Bourdon
, and
M.-Y.
Perrin
, “
Consistent multi-internal-temperatures models for nonequilibrium nozzle flows
,”
Chem. Phys.
420
,
15
24
(
2013
).
5.
I.
Armenise
and
F.
Esposito
, “
Dissociation–recombination models in hypersonic boundary layer O2/O flows
,”
Chem. Phys.
398
,
104
110
(
2012
).
6.
R. L.
Jaffe
,
D. W.
Schwenke
,
G.
Chaban
, and
W.
Huo
, “
Vibrational and rotational excitation and relaxation of nitrogen from accurate theoretical calculations
,” AIAA Paper 2008-1208,
2008
.
7.
G.
Chaban
,
R. L.
Jaffe
,
D. W.
Schwenke
, and
W.
Huo
, “
Dissociation cross-sections and rate coefficients for nitrogen from accurate theoretical calculations
,” AIAA Paper 2008-1209,
2008
.
8.
R. L.
Macdonald
,
R. L.
Jaffe
,
D. W.
Schwenke
, and
M.
Panesi
, “
Construction of a coarse-grain quasi-classical trajectory method. I. Theory and application to N2–N2 system
,”
J. Chem. Phys.
148
,
054309
(
2018
).
9.
J. D.
Bender
,
P.
Valentini
,
I.
Nompelis
,
Y.
Paukku
,
Z.
Varga
,
D. G.
Truhlar
,
T.
Schwartzentruber
, and
G. V.
Candler
, “
An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions
,”
J. Chem. Phys.
143
,
054304
(
2015
).
10.
N.
Parsons
,
D. A.
Levin
,
A. C. T.
van Duin
, and
T.
Zhu
, “
Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo
,”
J. Chem. Phys.
141
,
234307
(
2014
).
11.
A.
Munafò
,
S.
Venturi
,
R. L.
Macdonald
, and
M.
Panesi
, “
State-to-state and reduced-order models for recombination and energy transfer in aerothermal environments
,” AIAA Paper 2016-0505,
2016
.
12.
O.
Kunova
,
E.
Kustova
, and
A.
Savelev
, “
Generalized Treanor–Marrone model for state-specific dissociation rate coefficients
,”
Chem. Phys. Lett.
659
,
80
87
(
2016
).
13.
M.
Panesi
,
R. L.
Jaffe
,
D. W.
Schwenke
, and
T. E.
Magin
, “
Rovibrational internal energy transfer and dissociation of N2(1Σg+)–N(4Su) system in hypersonic flows
,”
J. Chem. Phys.
138
,
044312
(
2013
).
14.
M. S.
Grover
,
N.
Singh
,
T. E.
Schwartzentruber
, and
R. L.
Jaffe
, “
Dissociation and internal excitation of molecular nitrogen due to N2-N collisions using direct molecular simulation
,” AIAA Paper 2017-0660,
2017
.
15.
D. A.
Andrienko
and
I. D.
Boyd
, “
Rovibrational energy transfer and dissociation in O2–O collisions
,”
J. Chem. Phys.
144
,
104301
(
2016
).
16.
F.
Esposito
,
I.
Armenise
,
G.
Capitta
, and
M.
Capitelli
, “
O–O2 state-to-state vibrational relaxation and dissociation rates based on quasiclassical calculations
,”
Chem. Phys.
351
,
91
98
(
2008
).
17.
M.
Kulakhmetov
,
M.
Gallis
, and
A.
Alexeenko
, “
Ab initio-informed maximum entropy modeling of rovibrational relaxation and state-specific dissociation with application to the O2 + O system
,”
J. Chem. Phys.
144
,
174302
(
2016
).
18.
A.
Varandas
and
A.
Pais
, “
A realistic double many-body expansion (DMBE) potential energy surface for ground-state O3 from a multiproperty fit to ab initio calculations, and to experimental spectroscopic, inelastic scattering, and kinetic isotope thermal rate data
,”
Mol. Phys.
65
,
843
860
(
1988
).
19.
E.
Nikitin
, in
Theory of Elementary Atomic and Molecular Processes in Gases
(
Clarendon Press
,
Oxford
,
1974
), Chap. 7.
20.
J. G.
Kim
and
I. D.
Boyd
, “
Thermochemical nonequilibrium modeling of electronically excited molecular oxygen
,” AIAA Paper 2014-2963,
2014
.
21.
J. G.
Kim
and
I. D.
Boyd
, “
Monte Carlo simulation of nitrogen dissociation based on state-resolved cross sections
,”
Phys. Fluids
26
,
012006
(
2014
).
22.
C.
Zhang
and
T. E.
Schwartzentruber
, “
Consistent implementation of state-to-state collision models for direct simulation Monte Carlo
,” AIAA Paper 2014-0866,
2014
.
23.
I.
Borges Sebastião
,
M.
Kulakhmetov
, and
A.
Alexeenko
, “
DSMC study of oxygen shockwaves based on high-fidelity vibrational relaxation and dissociation models
,”
Phys. Fluids
29
,
017102
(
2017
).
24.
T. J.
Wilson
and
K. A.
Stephani
, “
State-to-state vibrational energy modeling in DSMC using quasiclassical trajectory calculations for O + O2
,” AIAA Paper 2016-3839,
2016
.
25.
T. J.
Wilson
,
T.-J.
Pan
, and
K. A.
Stephani
, “
State-to-state dissociation and recombination modeling in DSMC using quasi-classical trajectory calculations for O + O2
,” AIAA Paper 2018-1487,
2018
.
26.
C.
Borgnakke
and
P. S.
Larsen
, “
Statistical collision model for Monte Carlo simulation of polyatomic gas mixture
,”
J. Comput. Phys.
18
,
405
420
(
1975
).
27.
G.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon
,
1994
).
28.
G.
Bird
,
The DSMC Method
(
Create Space Independent Publishing Platform
,
2013
).
29.
I.
Wysong
,
S.
Gimelshein
,
Y.
Bondar
, and
M.
Ivanov
, “
Comparison of direct simulation Monte Carlo chemistry and vibrational models applied to oxygen shock measurements
,”
Phys. Fluids
26
,
043101
(
2014
).
30.
I. D.
Boyd
, “
Analysis of vibration-dissociation-recombination processes behind strong shock waves of nitrogen
,”
Phys. Fluids A
4
,
178
185
(
1992
).
31.
M. A.
Gallis
,
J. R.
Torczynski
,
S. J.
Plimpton
,
D. J.
Rader
, and
T.
Koehler
, “
Direct simulation Monte Carlo: The quest for speed
,”
AIP Conf. Proc.
1628
,
27
36
(
2014
).
32.
G.
Colonna
,
L. D.
Pietanza
, and
M.
Capitelli
, “
Recombination-assisted nitrogen dissociation rates under nonequilibrium conditions
,”
J. Thermophys. Heat Transfer
22
,
399
406
(
2008
).
33.
D. A.
Andrienko
,
K.
Neitzel
, and
I. D.
Boyd
,
“Vibrational relaxation and dissociation in O2–O mixtures
,” AIAA Paper 2016-4021,
2016
.
34.
S.
Gimelshein
and
I.
Wysong
, “
DSMC modeling of flows with recombination reactions
,”
Phys. Fluids
29
,
067106
(
2017
).
35.
K.
Koura
, “
A set of model cross sections for the Monte Carlo simulation of rarefied real gases: Atom–diatom collisions
,”
Phys. Fluids
6
,
3473
3486
(
1994
).
36.
D. C.
Wadsworth
and
I. J.
Wysong
, “
Vibrational favoring effect in DSMC dissociation models
,”
Phys. Fluids
9
,
3873
3884
(
1997
).
37.
F.
Esposito
and
M.
Capitelli
, “
The relaxation of vibrationally excited O2 molecules by atomic oxygen
,”
Chem. Phys. Lett.
443
,
222
226
(
2007
).
38.
F.
Esposito
and
M.
Capitelli
, “
Quasiclassical trajectory calculations of vibrationally specific dissociation cross-sections and rate constants for the reaction O + O2(v) → 3O
,”
Chem. Phys. Lett.
364
,
180
187
(
2002
).
39.
Z.
Varga
,
Y.
Paukku
, and
D. G.
Truhlar
, “
Potential energy surfaces for O + O2 collisions
,”
J. Chem. Phys.
147
,
154312
(
2017
).
40.
Y.
Paukku
,
K. R.
Yang
,
Z.
Varga
,
G.
Song
,
J. D.
Bender
, and
D. G.
Truhlar
, “
Potential energy surfaces of quintet and singlet O4
,”
J. Chem. Phys.
147
,
034301
(
2017
).
41.
Y.
Paukku
,
Z.
Varga
, and
D. G.
Truhlar
, “
Potential energy surface of triplet O4
,”
J. Chem. Phys.
148
,
124314
(
2018
).
42.
M. S.
Grover
,
T. E.
Schwartzentruber
,
Z.
Varga
, and
D.
Truhlar
, “
Dynamics of vibrational energy excitation and dissociation in oxygen from direct molecular simulation
,” AIAA Paper 2018-0238,
2018
.
43.
C.
Park
, “
Review of chemical-kinetic problems of future nasa missions. I-Earth entries
,”
J. Thermophys. Heat Transfer
7
,
385
398
(
1993
).
44.
N.
Gimelshein
,
S.
Gimelshein
, and
D.
Levin
, “
Vibrational relaxation rates in the direct simulation Monte Carlo method
,”
Phys. Fluids
14
,
4452
4455
(
2002
).
45.
G.
Bird
, “
A comparison of collision energy-based and temperature-based procedures in DSMC
,”
AIP Conf. Proc.
1084
,
245
250
(
2008
).
46.
G.
Bird
, “
The QK model for gas-phase chemical reaction rates
,”
Phys. Fluids
23
,
106101
(
2011
).
47.
G.
Bird
, “
Setting the post-reaction internal energies in direct simulation Monte Carlo chemistry simulations
,”
Phys. Fluids
24
,
127104
(
2012
).
48.
J. P.
Toennies
,
W.
Welz
, and
G.
Wolf
, “
Molecular beam scattering studies of orbiting resonances and the determination of van der Waals potentials for H–Ne, Ar, Kr, and Xe and for H2–Ar, Kr, and Xe
,”
J. Chem. Phys.
71
,
614
642
(
1979
).
49.
J. H.
Ferziger
and
H. G.
Kaper
,
Mathematical Theory of Transport Processes in Gases
(
North-Holland
,
1972
).
50.
M.
Capitelli
,
D.
Bruno
, and
A.
Laricchiuta
,
Fundamental Aspects of Plasma Chemical Physics: Transport
(
Springer
,
2013
), Vol. 74.
51.
A. B.
Weaver
, “
Assessment of high-fidelity collision models in the direct simulation Monte Carlo method
,” Ph.D. thesis,
Purdue University
,
2015
.
52.
S.
Subramaniam
and
K. A.
Stephani
, “
Characterization of state-resolved transport for O + O2 collisions
,” AIAA Paper 2018-1484,
2018
.
53.
A.
Mahfouf
,
P.
André
,
G.
Faure
, and
M.-F.
Elchinger
, “
Theoretical and numerical study of transport collision integrals: Application to O (3P)–O(3P) interaction
,”
Chem. Phys.
491
,
1
10
(
2017
).
54.
W. G.
Vincenti
and
C. H.
Kruger
,
Introduction to Physical Gas Dynamics
(
Wiley
,
New York
,
1965
), Vol. 246.
55.
B. H.
Mahan
, “
Microscopic reversibility and detailed balance. An analysis
,”
J. Chem. Educ.
52
,
299
(
1975
).
56.
M.
Gallis
,
R.
Bond
, and
J.
Torczynski
, “
Assessment of reaction-rate predictions of a collision-energy approach for chemical reactions in atmospheric flows
,”
AIAA Paper
2010
-
4499
,
2010
.
57.
P.
Norman
and
T.
Schwartzentruber
, “
Classical trajectory calculation direct simulation Monte Carlo: GPU acceleration and three body collisions
,”
AIAA Paper AIAA-2013-1200
,
2013
.
58.
L.
Ibraguimova
,
A.
Sergievskaya
,
V. Y.
Levashov
,
O.
Shatalov
,
Y. V.
Tunik
, and
I.
Zabelinskii
, “
Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000–10 800 K
,”
J. Chem. Phys.
139
,
034317
(
2013
).
59.
S.
Gimelshein
,
N.
Gimelshein
,
D.
Levin
,
M.
Ivanov
, and
I.
Wysong
, “
On the use of chemical reaction rates with discrete internal energies in the direct simulation Monte Carlo method
,”
Phys. Fluids
16
,
2442
2451
(
2004
).
You do not currently have access to this content.