The interaction between nano- or micro-sized particles and cell membranes is of crucial importance in many biological and biomedical applications such as drug and gene delivery to cells and tissues. During their cellular uptake, the particles can pass through cell membranes via passive endocytosis or by active penetration to reach a target cellular compartment or organelle. In this manuscript, we develop a simple model to describe the interaction of a self-driven spherical particle (moving through an effective constant active force) with a minimal membrane system, allowing for both penetration and trapping. We numerically calculate the state diagram of this system, the membrane shape, and its dynamics. In this context, we show that the active particle may either get trapped near the membrane or penetrate through it, where the membrane can either be permanently destroyed or recover its initial shape by self-healing. Additionally, we systematically derive a continuum description allowing us to accurately predict most of our results analytically. This analytical theory helps in identifying the generic aspects of our model, suggesting that most of its ingredients should apply to a broad range of membranes, from simple model systems composed of magnetic microparticles to lipid bilayers. Our results might be useful to predict the mechanical properties of synthetic minimal membranes.
Skip Nav Destination
Article navigation
14 February 2019
Research Article|
February 12 2019
Membrane penetration and trapping of an active particle
Special Collection:
Chemical Physics of Active Matter
Abdallah Daddi-Moussa-Ider
;
Abdallah Daddi-Moussa-Ider
a)
1
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf
, Universitätsstraße 1, 40225 Düsseldorf, Germany
Search for other works by this author on:
Segun Goh
;
Segun Goh
1
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf
, Universitätsstraße 1, 40225 Düsseldorf, Germany
Search for other works by this author on:
Benno Liebchen;
Benno Liebchen
1
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf
, Universitätsstraße 1, 40225 Düsseldorf, Germany
Search for other works by this author on:
Christian Hoell;
Christian Hoell
1
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf
, Universitätsstraße 1, 40225 Düsseldorf, Germany
Search for other works by this author on:
Arnold J. T. M. Mathijssen
;
Arnold J. T. M. Mathijssen
2
Department of Bioengineering, Stanford University
, 443 Via Ortega, Stanford, California 94305, USA
Search for other works by this author on:
Francisca Guzmán-Lastra;
Francisca Guzmán-Lastra
1
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf
, Universitätsstraße 1, 40225 Düsseldorf, Germany
3
Facultad de Ciencias, Universidad Mayor
, Ave. Manuel Montt 367, Providencia, Santiago de Chile, Chile
Search for other works by this author on:
Christian Scholz;
Christian Scholz
1
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf
, Universitätsstraße 1, 40225 Düsseldorf, Germany
Search for other works by this author on:
Andreas M. Menzel;
Andreas M. Menzel
1
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf
, Universitätsstraße 1, 40225 Düsseldorf, Germany
Search for other works by this author on:
Hartmut Löwen
Hartmut Löwen
b)
1
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf
, Universitätsstraße 1, 40225 Düsseldorf, Germany
Search for other works by this author on:
a)
Electronic mail: [email protected]
b)
Electronic mail: [email protected]
Note: This article is part of the Special Topic “Chemical Physics of Active Matter” in J. Chem. Phys.
J. Chem. Phys. 150, 064906 (2019)
Article history
Received:
November 12 2018
Accepted:
January 23 2019
Citation
Abdallah Daddi-Moussa-Ider, Segun Goh, Benno Liebchen, Christian Hoell, Arnold J. T. M. Mathijssen, Francisca Guzmán-Lastra, Christian Scholz, Andreas M. Menzel, Hartmut Löwen; Membrane penetration and trapping of an active particle. J. Chem. Phys. 14 February 2019; 150 (6): 064906. https://doi.org/10.1063/1.5080807
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
DeePMD-kit v2: A software package for deep potential models
Jinzhe Zeng, Duo Zhang, et al.
CREST—A program for the exploration of low-energy molecular chemical space
Philipp Pracht, Stefan Grimme, et al.
Rubber wear: Experiment and theory
B. N. J. Persson, R. Xu, et al.