The interaction between nano- or micro-sized particles and cell membranes is of crucial importance in many biological and biomedical applications such as drug and gene delivery to cells and tissues. During their cellular uptake, the particles can pass through cell membranes via passive endocytosis or by active penetration to reach a target cellular compartment or organelle. In this manuscript, we develop a simple model to describe the interaction of a self-driven spherical particle (moving through an effective constant active force) with a minimal membrane system, allowing for both penetration and trapping. We numerically calculate the state diagram of this system, the membrane shape, and its dynamics. In this context, we show that the active particle may either get trapped near the membrane or penetrate through it, where the membrane can either be permanently destroyed or recover its initial shape by self-healing. Additionally, we systematically derive a continuum description allowing us to accurately predict most of our results analytically. This analytical theory helps in identifying the generic aspects of our model, suggesting that most of its ingredients should apply to a broad range of membranes, from simple model systems composed of magnetic microparticles to lipid bilayers. Our results might be useful to predict the mechanical properties of synthetic minimal membranes.

1.
K. T.
Kaljot
,
R. D.
Shaw
,
D. H.
Rubin
, and
H. B.
Greenberg
, “
Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis
,”
J. Virol.
62
,
1136
1144
(
1988
), available at https://jvi.asm.org/content/62/4/1136.
2.
H.
Lodish
,
A.
Berk
,
S. L.
Zipursky
,
P.
Matsudaira
,
D.
Baltimore
,
J.
Darnell
 et al.,
Molecular Cell Biology
(
W. H. Freeman
,
New York
,
1995
), Vol. 3.
3.
G.
Seisenberger
,
M. U.
Ried
,
T.
Endreß
,
H.
Büning
,
M.
Hallek
, and
C.
Bräuchle
, “
Real-time single-molecule imaging of the infection pathway of an adeno-associated virus
,”
Science
294
,
1929
1932
(
2001
).
4.
K.
Saar
,
M.
Lindgren
,
M.
Hansen
,
E.
Eiríksdóttir
,
Y.
Jiang
,
K.
Rosenthal-Aizman
,
M.
Sassian
, and
Ü.
Langel
, “
Cell-penetrating peptides: A comparative membrane toxicity study
,”
Anal. Biochem.
345
,
55
65
(
2005
).
5.
G.
Karp
,
Cell and Molecular Biology: Concepts and Experiments
(
Wiley
,
Hoboken, NJ
,
2008
).
6.
Y.
Li
,
H.
Yuan
,
A.
von dem Bussche
,
M.
Creighton
,
R. H.
Hurt
,
A. B.
Kane
, and
H.
Gao
, “
Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
12295
12300
(
2013
).
7.
A. R.
Liboff
, “
Magnetic correlates in electromagnetic consciousness
,”
Electromagn. Biol. Med.
35
,
228
236
(
2016
).
8.
Y.
Xia
, “
Nanomaterials at work in biomedical research
,”
Nat. Mater.
7
,
758
(
2008
).
9.
D. K.
Kirui
,
D. A.
Rey
, and
C. A.
Batt
, “
Gold hybrid nanoparticles for targeted phototherapy and cancer imaging
,”
Nanotechnology
21
,
105105
(
2010
).
10.
J. S.
Suk
,
Q.
Xu
,
N.
Kim
,
J.
Hanes
, and
L. M.
Ensign
, “
PEGylation as a strategy for improving nanoparticle-based drug and gene delivery
,”
Adv. Drug Delivery Rev.
99
,
28
51
(
2016
).
11.
C.
Lanvers-Kaminsky
,
A.
am Zehnhoff-Dinnesen
,
R.
Parfitt
, and
G.
Ciarimboli
, “
Drug-induced ototoxicity: Mechanisms, pharmacogenetics, and protective strategies
,”
Clin. Pharmacol. Ther.
101
,
491
500
(
2017
).
12.
K. B.
Jirage
,
J. C.
Hulteen
, and
C. R.
Martin
, “
Nanotubule-based molecular-filtration membranes
,”
Science
278
,
655
658
(
1997
).
13.
S. Y.
Yang
,
I.
Ryu
,
H. Y.
Kim
,
J. K.
Kim
,
S. K.
Jang
, and
T. P.
Russell
, “
Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses
,”
Adv. Mater.
18
,
709
712
(
2006
).
14.
A.
Kalra
,
S.
Garde
, and
G.
Hummer
, “
Osmotic water transport through carbon nanotube membranes
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
10175
10180
(
2003
).
15.
P.
Nelson
,
Biological Physics
(
W. H. Freeman
,
New York
,
2004
).
16.
H.
Nikaido
and
M. H.
Saier
, “
Transport proteins in bacteria: Common themes in their design
,”
Science
258
,
936
942
(
1992
).
17.
M.
Palacín
,
R.
Estévez
,
J.
Bertran
, and
A.
Zorzano
, “
Molecular biology of mammalian plasma membrane amino acid transporters
,”
Physiol. Rev.
78
,
969
1054
(
1998
).
18.
E. R.
Kandel
,
J. H.
Schwartz
,
T. M.
Jessell
,
D.
of Biochemistry
,
M. B. T.
Jessell
,
S.
Siegelbaum
, and
A.
Hudspeth
,
Principles of Neural Science
(
McGraw-Hill
,
New York
,
2000
), Vol. 4.
19.
I. A.
Simpson
,
A.
Carruthers
, and
S. J.
Vannucci
, “
Supply and demand in cerebral energy metabolism: The role of nutrient transporters
,”
J. Cereb. Blood Flow Metab.
27
,
1766
1791
(
2007
).
20.
M.
Yu
,
L.
Xu
,
F.
Tian
,
Q.
Su
,
N.
Zheng
,
Y.
Yang
,
J.
Wang
,
A.
Wang
,
C.
Zhu
,
S.
Guo
 et al., “
Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers
,”
Nat. Commun.
9
,
2607
(
2018
).
21.
A. J. T. M.
Mathijssen
,
R.
Jeanneret
, and
M.
Polin
, “
Universal entrainment mechanism controls contact times with motile cells
,”
Phys. Rev. Fluids
3
,
033103
(
2018
).
22.
C.
Gräfe
,
I.
Slabu
,
F.
Wiekhorst
,
C.
Bergemann
,
F.
von Eggeling
,
A.
Hochhaus
,
L.
Trahms
, and
J.
Clement
, “
Magnetic particle spectroscopy allows precise quantification of nanoparticles after passage through human brain microvascular endothelial cells
,”
Phys. Med. Biol.
61
,
3986
(
2016
).
23.
F.
Schlenk
,
S.
Werner
,
M.
Rabel
,
F.
Jacobs
,
C.
Bergemann
,
J. H.
Clement
, and
D.
Fischer
, “
Comprehensive analysis of the in vitro and ex ovo hemocompatibility of surface engineered iron oxide nanoparticles for biomedical applications
,”
Arch. Toxicol.
91
,
3271
3286
(
2017
).
24.
E. K.
Müller
,
C.
Gräfe
,
F.
Wiekhorst
,
C.
Bergemann
,
A.
Weidner
,
S.
Dutz
, and
J. H.
Clement
, “
Magnetic nanoparticles interact and pass an in vitro co-culture blood-placenta barrier model
,”
Nanomaterials
8
,
108
(
2018
).
25.
B. D.
Chithrani
,
A. A.
Ghazani
, and
W. C. W.
Chan
, “
Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells
,”
Nano Lett.
6
,
662
668
(
2006
).
26.
J.
Lin
,
H.
Zhang
,
Z.
Chen
, and
Y.
Zheng
, “
Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship
,”
ACS Nano
4
,
5421
5429
(
2010
).
27.
K.
Yang
and
Y. Q.
Ma
, “
Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer
,”
Nat. Nanotechnol.
5
,
579
583
(
2010
).
28.
T.
Dos Santos
,
J.
Varela
,
I.
Lynch
,
A.
Salvati
, and
K. A.
Dawson
, “
Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines
,”
Small
7
,
3341
3349
(
2011
).
29.
S.
Dasgupta
,
T.
Auth
, and
G.
Gompper
, “
Shape and orientation matter for the cellular uptake of nonspherical particles
,”
Nano Lett.
14
,
687
693
(
2014
).
30.
S.
Dasgupta
,
T.
Auth
, and
G.
Gompper
, “
Nano- and microparticles at fluid and biological interfaces
,”
J. Phys.: Condens. Matter
29
,
373003
(
2017
).
31.
E.
Barry
and
Z.
Dogic
, “
Entropy driven self-assembly of nonamphiphilic colloidal membranes
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
10348
10353
(
2010
).
32.
K.
Zahn
and
G.
Maret
, “
Two-dimensional colloidal structures responsive to external fields
,”
Curr. Opin. Colloid Interface Sci.
4
,
60
65
(
1999
).
33.
M.
Mittal
and
E. M.
Furst
, “
Electric field-directed convective assembly of ellipsoidal colloidal particles to create optically and mechanically anisotropic thin films
,”
Adv. Funct. Mater.
19
,
3271
3278
(
2009
).
34.
N.
Osterman
,
I.
Poberaj
,
J.
Dobnikar
,
D.
Frenkel
,
P.
Ziherl
, and
D.
Babić
, “
Field-induced self-assembly of suspended colloidal membranes
,”
Phys. Rev. Lett.
103
,
228301
(
2009
).
35.
E. C.
Oğuz
,
M.
Marechal
,
F.
Ramiro-Manzano
,
I.
Rodriguez
,
R.
Messina
,
F. J.
Meseguer
, and
H.
Löwen
, “
Packing confined hard spheres denser with adaptive prism phases
,”
Phys. Rev. Lett.
109
,
218301
(
2012
).
36.
J.
Dobnikar
,
A.
Snezhko
, and
A.
Yethiraj
, “
Emergent colloidal dynamics in electromagnetic fields
,”
Soft Matter
9
,
3693
3704
(
2013
).
37.
I.
Williams
,
E. C.
Oğuz
,
T.
Speck
,
P.
Bartlett
,
H.
Löwen
, and
C. P.
Royall
, “
Transmission of torque at the nanoscale
,”
Nat. Phys.
12
,
98
(
2016
).
38.
A.
Ortiz-Ambriz
and
P.
Tierno
, “
Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices
,”
Nat. Commun.
7
,
10575
(
2016
).
39.
J.
Loehr
,
A.
Ortiz-Ambriz
, and
P.
Tierno
, “
Defect dynamics in artificial colloidal ice: Real-time observation, manipulation, and logic gate
,”
Phys. Rev. Lett.
117
,
168001
(
2016
).
40.
P.
Tierno
, “
Geometric frustration of colloidal dimers on a honeycomb magnetic lattice
,”
Phys. Rev. Lett.
116
,
038303
(
2016
).
41.
W.
Shenton
,
S. A.
Davis
, and
S.
Mann
, “
Directed self-assembly of nanoparticles into macroscopic materials using antibody–antigen recognition
,”
Adv. Mater.
11
,
449
452
(
1999
).
42.
M.
Grzelczak
,
J.
Vermant
,
E. M.
Furst
, and
L. M.
Liz-Marzán
, “
Directed self-assembly of nanoparticles
,”
ACS Nano
4
,
3591
3605
(
2010
).
43.
V.
Froltsov
,
R.
Blaak
,
C.
Likos
, and
H.
Löwen
, “
Crystal structures of two-dimensional magnetic colloids in tilted external magnetic fields
,”
Phys. Rev. E
68
,
061406
(
2003
).
44.
V.
Froltsov
,
C. N.
Likos
,
H.
Löwen
,
C.
Eisenmann
,
U.
Gasser
,
P.
Keim
, and
G.
Maret
, “
Anisotropic mean-square displacements in two-dimensional colloidal crystals of tilted dipoles
,”
Phys. Rev. E
71
,
031404
(
2005
).
45.
Y.
Lin
,
A.
Böker
,
J.
He
,
K.
Sill
,
H.
Xiang
,
C.
Abetz
,
X.
Li
,
J.
Wang
,
T.
Emrick
,
S.
Long
 et al., “
Self-directed self-assembly of nanoparticle/copolymer mixtures
,”
Nature
434
,
55
(
2005
).
46.
D.
Heinrich
,
A. R.
Goñi
,
T.
Osan
,
L.
Cerioni
,
A.
Smessaert
,
S. H.
Klapp
,
J.
Faraudo
,
D. J.
Pusiol
, and
C.
Thomsen
, “
Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles
,”
Soft Matter
11
,
7606
7616
(
2015
).
47.
A. B.
Yener
and
S. H.
Klapp
, “
Self-assembly of three-dimensional ensembles of magnetic particles with laterally shifted dipoles
,”
Soft Matter
12
,
2066
2075
(
2016
).
48.
S. D.
Peroukidis
and
S. H. L.
Klapp
, “
Orientational order and translational dynamics of magnetic particle assemblies in liquid crystals
,”
Soft Matter
12
,
6841
6850
(
2016
).
49.
B.
Bharti
,
F.
Kogler
,
C. K.
Hall
,
S. H.
Klapp
, and
O. D.
Velev
, “
Multidirectional colloidal assembly in concurrent electric and magnetic fields
,”
Soft Matter
12
,
7747
7758
(
2016
).
50.
Q. A.
Pankhurst
,
J.
Connolly
,
S.
Jones
, and
J.
Dobson
, “
Applications of magnetic nanoparticles in biomedicine
,”
J. Phys. D: Appl. Phys.
36
,
R167
(
2003
).
51.
A.-H.
Lu
,
E. L.
Salabas
, and
F.
Schüth
, “
Magnetic nanoparticles: Synthesis, protection, functionalization, and application
,”
Angew. Chem., Int. Ed.
46
,
1222
1244
(
2007
).
52.
S.
Naahidi
,
M.
Jafari
,
F.
Edalat
,
K.
Raymond
,
A.
Khademhosseini
, and
P.
Chen
, “
Biocompatibility of engineered nanoparticles for drug delivery
,”
J. Controlled Release
166
,
182
194
(
2013
).
53.
H.
Al-Obaidi
and
A. T.
Florence
, “
Nanoparticle delivery and particle diffusion in confined and complex environments
,”
J. Drug Delivery Sci. Technol.
30
,
266
277
(
2015
).
54.
J.
Liu
,
T.
Wei
,
J.
Zhao
,
Y.
Huang
,
H.
Deng
,
A.
Kumar
,
C.
Wang
,
Z.
Liang
,
X.
Ma
, and
X.-J.
Liang
, “
Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance
,”
Biomaterials
91
,
44
56
(
2016
).
55.
J.
Gao
,
H.
Gu
, and
B.
Xu
, “
Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications
,”
Acc. Chem. Res.
42
,
1097
1107
(
2009
).
56.
N.
Wang
,
J.
Butler
, and
D.
Ingber
, “
Mechanotransduction across the cell surface and through the cytoskeleton
,”
Science
260
,
1124
1127
(
1993
).
57.
J.
Dobson
, “
Remote control of cellular behaviour with magnetic nanoparticles
,”
Nat. Nanotechnol.
3
,
139
(
2008
).
58.
Q. A.
Pankhurst
,
N. T. K.
Thanh
,
S. K.
Jones
, and
J.
Dobson
, “
Progress in applications of magnetic nanoparticles in biomedicine
,”
J. Phys. D: Appl. Phys.
42
,
224001
(
2009
).
59.
M.
Ewerlin
,
D.
Demirbas
,
F.
Brüssing
,
O.
Petracic
,
A. A.
Ünal
,
S.
Valencia
,
F.
Kronast
, and
H.
Zabel
, “
Magnetic dipole and higher pole interaction on a square lattice
,”
Phys. Rev. Lett.
110
,
177209
(
2013
).
60.
L.
Spiteri
and
R.
Messina
, “
Columnar aggregation of dipolar chains
,”
Europhys. Lett.
120
,
36001
(
2017
).
61.
R.
Messina
,
L. A.
Khalil
, and
I.
Stanković
, “
Self-assembly of magnetic balls: From chains to tubes
,”
Phys. Rev. E
89
,
011202
(
2014
).
62.
R.
Messina
and
I.
Stanković
, “
Assembly of magnetic spheres in strong homogeneous magnetic field
,”
Physica A
466
,
10
20
(
2017
).
63.
F.
Guzmán-Lastra
,
A.
Kaiser
, and
H.
Löwen
, “
Fission and fusion scenarios for magnetic microswimmer clusters
,”
Nat. Commun.
7
,
13519
(
2016
).
64.
F.
Martinez-Pedrero
,
A.
Ortiz-Ambriz
,
I.
Pagonabarraga
, and
P.
Tierno
, “
Colloidal microworms propelling via a cooperative hydrodynamic conveyor belt
,”
Phys. Rev. Lett.
115
,
138301
(
2015
).
65.
A.
Kaiser
,
K.
Popowa
, and
H.
Löwen
, “
Active dipole clusters: From helical motion to fission
,”
Phys. Rev. E
92
,
012301
(
2015
).
66.
S.
Babel
,
H.
Löwen
, and
A. M.
Menzel
, “
Dynamics of a linear magnetic ‘microswimmer molecule’
,”
Europhys. Lett.
113
,
58003
(
2016
).
67.
A. J. T. M.
Mathijssen
,
A.
Doostmohammadi
,
J. M.
Yeomans
, and
T. N.
Shendruk
, “
Hydrodynamics of microswimmers in films
,”
J. Fluid Mech.
806
,
35
70
(
2016
).
68.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers—Single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
,
056601
(
2015
).
69.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
70.
J.
de Graaf
,
H.
Menke
,
A. J. T. M.
Mathijssen
,
M.
Fabritius
,
C.
Holm
, and
T.
Shendruk
, “
Lattice-Boltzmann hydrodynamics of anisotropic active matter
,”
J. Chem. Phys.
144
,
134106
(
2016
).
71.
F.
Martinez-Pedrero
,
E.
Navarro-Argemí
,
A.
Ortiz-Ambriz
,
I.
Pagonabarraga
, and
P.
Tierno
, “
Emergent hydrodynamic bound states between magnetically powered micropropellers
,”
Sci. Adv.
4
,
eaap9379
(
2018
).
72.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
,
C.
Hoell
, and
H.
Löwen
, “
Swimming trajectories of a three-sphere microswimmer near a wall
,”
J. Chem. Phys.
148
,
134904
(
2018
).
73.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
,
A. J. T. M.
Mathijssen
,
C.
Hoell
,
S.
Goh
,
J.
Bławzdziewicz
,
A. M.
Menzel
, and
H.
Löwen
, “
State diagram of a three-sphere microswimmer in a channel
,”
J. Phys.: Condens. Matter
30
,
254004
(
2018
).
74.
J.
García-Torres
,
C.
Calero
,
F.
Sagués
,
I.
Pagonabarraga
, and
P.
Tierno
, “
Magnetically tunable bidirectional locomotion of a self-assembled nanorod-sphere propeller
,”
Nat. Commun.
9
,
1663
(
2018
).
75.
T.
Yu
,
P.
Chuphal
,
S.
Thakur
,
S.-Y.
Reigh
,
D. P.
Singh
, and
P.
Fischer
, “
Chemical micromotors self-assemble and self-propel by spontaneous symmetry breaking
,”
Chem. Commun.
54
,
11933
(
2018
).
76.
A. J.
Mathijssen
,
F.
Guzmán-Lastra
,
A.
Kaiser
, and
H.
Löwen
, “
Nutrient transport driven by microbial active carpets
,”
Phys. Rev. Lett.
121
,
248101
(
2018
).
77.
A.
Daddi-Moussa-Ider
and
A. M.
Menzel
, “
Dynamics of a simple model microswimmer in an anisotropic fluid: Implications for alignment behavior and active transport in a nematic liquid crystal
,”
Phys. Rev. Fluids
3
,
094102
(
2018
).
78.
A.
Kaiser
,
S.
Babel
,
B.
ten Hagen
,
C.
von Ferber
, and
H.
Löwen
, “
How does a flexible chain of active particles swell?
,”
J. Chem. Phys.
142
,
124905
(
2015
).
79.
R. G.
Winkler
,
J.
Elgeti
, and
G.
Gompper
, “
Active polymers–emergent conformational and dynamical properties: A brief review
,”
J. Phys. Soc. Jpn.
86
,
101014
(
2017
).
80.
A.
Martín-Gómez
,
G.
Gompper
, and
R.
Winkler
, “
Active brownian filamentous polymers under shear flow
,”
Polymers
10
,
837
(
2018
).
81.
Ö.
Duman
,
R. E.
Isele-Holder
,
J.
Elgeti
, and
G.
Gompper
, “
Collective dynamics of self-propelled semiflexible filaments
,”
Soft Matter
14
,
4483
4494
(
2018
).
82.
Y.
Peng
,
H.
Zhang
,
X.-W.
Huang
,
J.-H.
Huang
, and
M.-B.
Luo
, “
Monte Carlo simulation on the dynamics of a semi-flexible polymer in the presence of nanoparticles
,”
Phys. Chem. Chem. Phys.
20
,
26333
26343
(
2018
).
83.
J.
Shin
,
A. G.
Cherstvy
,
W. K.
Kim
, and
R.
Metzler
, “
Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles
,”
New J. Phys.
17
,
113008
(
2015
).
84.
B.
ten Hagen
,
S.
van Teeffelen
, and
H.
Löwen
, “
Brownian motion of a self-propelled particle
,”
J. Phys.: Condens. Matter
23
,
194119
(
2011
).
85.
R.
Wittkowski
and
H.
Löwen
, “
Self-propelled brownian spinning top: Dynamics of a biaxial swimmer at low Reynolds numbers
,”
Phys. Rev. E
85
,
021406
(
2012
).
86.
A.
Kaiser
,
H.
Wensink
, and
H.
Löwen
, “
How to capture active particles
,”
Phys. Rev. Lett.
108
,
268307
(
2012
).
87.
H. H.
Wensink
and
H.
Löwen
, “
Emergent states in dense systems of active rods: From swarming to turbulence
,”
J. Phys.: Condens. Matter
24
,
464130
(
2012
).
88.
F.
Kümmel
,
B.
ten Hagen
,
R.
Wittkowski
,
I.
Buttinoni
,
R.
Eichhorn
,
G.
Volpe
,
H.
Löwen
, and
C.
Bechinger
, “
Circular motion of asymmetric self-propelling particles
,”
Phys. Rev. Lett.
110
,
198302
(
2013
).
89.
B.
ten Hagen
,
F.
Kümmel
,
R.
Wittkowski
,
D.
Takagi
,
H.
Löwen
, and
C.
Bechinger
, “
Gravitaxis of asymmetric self-propelled colloidal particles
,”
Nat. Commun.
5
,
4829
(
2014
).
90.
B.
ten Hagen
,
R.
Wittkowski
,
D.
Takagi
,
F.
Kümmel
,
C.
Bechinger
, and
H.
Löwen
, “
Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?
,”
J. Phys.: Condens. Matter
27
,
194110
(
2015
).
91.
T.
Speck
and
R. L.
Jack
, “
Ideal bulk pressure of active brownian particles
,”
Phys. Rev. E
93
,
062605
(
2016
).
92.
M.
Driscoll
and
B.
Delmotte
, “
Leveraging collective effects in externally driven colloidal suspensions: Experiments and simulations
,”
Curr. Opin. Colloid Interface Sci.
40
,
42
(
2018
).
93.
W.
Gao
,
X.
Feng
,
A.
Pei
,
C. R.
Kane
,
R.
Tam
,
C.
Hennessy
, and
J.
Wang
, “
Bioinspired helical microswimmers based on vascular plants
,”
Nano Lett.
14
,
305
310
(
2013
).
94.
W.
Gao
and
J.
Wang
, “
Synthetic micro/nanomotors in drug delivery
,”
Nanoscale
6
,
10486
10494
(
2014
).
95.
C.
Scholz
,
M.
Engel
, and
T.
Pöschel
, “
Rotating robots move collectively and self-organize
,”
Nat. Commun.
9
,
931
(
2018
).
96.
C.
Scholz
,
S.
Jahanshahi
,
A.
Ldov
, and
H.
Löwen
, “
Inertial delay of self-propelled particles
,”
Nat. Commun.
9
,
5156
(
2018
).
97.
B. J.
Nelson
,
I. K.
Kaliakatsos
, and
J. J.
Abbott
, “
Microrobots for minimally invasive medicine
,”
Annu. Rev. Biomed. Eng.
12
,
55
85
(
2010
).
98.
W.
Xi
,
A. A.
Solovev
,
A. N.
Ananth
,
D. H.
Gracias
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Rolled-up magnetic microdrillers: Towards remotely controlled minimally invasive surgery
,”
Nanoscale
5
,
1294
1297
(
2013
).
99.
L. K.
Abdelmohsen
,
F.
Peng
,
Y.
Tu
, and
D. A.
Wilson
, “
Micro-and nano-motors for biomedical applications
,”
J. Mater. Chem. B
2
,
2395
2408
(
2014
).
100.
J.
Wang
and
W.
Gao
, “
Nano/microscale motors: Biomedical opportunities and challenges
,”
ACS Nano
6
,
5745
5751
(
2012
).
101.
W.
Wang
,
W.
Duan
,
S.
Ahmed
,
T. E.
Mallouk
, and
A.
Sen
, “
Small power: Autonomous nano-and micromotors propelled by self-generated gradients
,”
Nano Today
8
,
531
554
(
2013
).
102.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K. St.
Angelo
,
Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
, “
Catalytic nanomotors: Autonomous movement of striped nanorods
,”
J. Am. Chem. Soc.
126
,
13424
13431
(
2004
).
103.
W.
Wang
,
S.
Li
,
L.
Mair
,
S.
Ahmed
,
T. J.
Huang
, and
T. E.
Mallouk
, “
Acoustic propulsion of nanorod motors inside living cells
,”
Angew. Chem., Int. Ed.
53
,
3201
3204
(
2014
).
104.
U.
Marini Bettolo Marconi
,
A.
Sarracino
,
C.
Maggi
, and
A.
Puglisi
, “
Self-propulsion against a moving membrane: Enhanced accumulation and drag force
,”
Phys. Rev. E
96
,
032601
(
2017
).
105.
G.
Junot
,
G.
Briand
,
R.
Ledesma-Alonso
, and
O.
Dauchot
, “
Active versus passive hard disks against a membrane: Mechanical pressure and instability
,”
Phys. Rev. Lett.
119
,
028002
(
2017
).
106.
A. F.
Demirörs
,
J. C.
Stiefelhagen
,
T.
Vissers
,
F.
Smallenburg
,
M.
Dijkstra
,
A.
Imhof
, and
A.
van Blaaderen
, “
Long-ranged oppositely charged interactions for designing new types of colloidal clusters
,”
Phys. Rev. X
5
,
021012
(
2015
).
107.
D.
Vella
,
E.
du Pontavice
,
C. L.
Hall
, and
A.
Goriely
, “
The magneto-elastica: From self-buckling to self-assembly
,”
Proc. R. Soc. A
470
,
20130609
(
2014
).
108.
C.
Hall
,
D.
Vella
, and
A.
Goriely
, “
The mechanics of a chain or ring of spherical magnets
,”
SIAM J. Appl. Math.
73
,
2029
2054
(
2013
).
109.
B.
Kiani
,
D.
Faivre
, and
S.
Klumpp
, “
Elastic properties of magnetosome chains
,”
New J. Phys.
17
,
043007
(
2015
).
110.
S.
Klumpp
,
C. T.
Lefèvre
,
M.
Bennet
, and
D.
Faivre
, “
Swimming with magnets: From biological organisms to synthetic devices
,”
Phys. Rep.
789
,
1
54
(
2019
).
111.
H.-H.
Boltz
and
S.
Klumpp
, “
Buckling of elastic filaments by discrete magnetic moments
,”
Eur. Phys. J. E
40
,
86
(
2017
).
112.
F.
Deißenbeck
,
H.
Löwen
, and
E. C.
Oğuz
, “
Ground state of dipolar hard spheres confined in channels
,”
Phys. Rev. E
97
,
052608
(
2018
).
113.
A. P.
Philipse
,
M. P. B.
van Bruggen
, and
C.
Pathmamanoharan
, “
Magnetic silica dispersions: Preparation and stability of surface-modified silica particles with a magnetic core
,”
Langmuir
10
,
92
99
(
1994
).
114.
A. P.
Gast
and
L.
Leibler
, “
Interactions of sterically stabilized particles suspended in a polymer solution
,”
Macromolecules
19
,
686
691
(
1986
).
115.
G.
Nägele
, “
On the dynamics and structure of charge-stabilized suspensions
,”
Phys. Rep.
272
,
215
372
(
1996
).
116.
M.
Eshraghi
and
J.
Horbach
, “
Molecular dynamics simulation of charged colloids confined between hard walls: Pre-melting and pre-freezing across the BCC–fluid coexistence
,”
Soft Matter
14
,
4141
4149
(
2018
).
117.
G.
Filipcsei
,
I.
Csetneki
,
A.
Szilágyi
, and
M.
Zrínyi
, “
Magnetic field-responsive smart polymer composites
,”
Adv. Polym. Sci.
206
,
137
189
(
2007
).
118.
N.
Frickel
,
R.
Messing
, and
A. M.
Schmidt
, “
Magneto-mechanical coupling in CoFe2O4-linked PAAm ferrohydrogels
,”
J. Mater. Chem.
21
,
8466
8474
(
2011
).
119.
P.
Ilg
, “
Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles
,”
Soft Matter
9
,
3465
3468
(
2013
).
120.
P.
Cremer
,
H.
Löwen
, and
A. M.
Menzel
, “
Tailoring superelasticity of soft magnetic materials
,”
Appl. Phys. Lett.
107
,
171903
(
2015
).
121.
P.
Cremer
,
H.
Löwen
, and
A. M.
Menzel
, “
Superelastic stress–strain behavior in ferrogels with different types of magneto-elastic coupling
,”
Phys. Chem. Chem. Phys.
18
,
26670
26690
(
2016
).
122.
G.
Pessot
,
H.
Löwen
, and
A. M.
Menzel
, “
Dynamic elastic moduli in magnetic gels: Normal modes and linear response
,”
J. Chem. Phys.
145
,
104904
(
2016
).
123.
V.
Yannopapas
,
S. H.
Klapp
, and
S. D.
Peroukidis
, “
Magneto-optical properties of liquid-crystalline ferrofluids
,”
Opt. Mater. Express
6
,
2681
2688
(
2016
).
124.
P.
Cremer
,
M.
Heinen
,
A. M.
Menzel
, and
H.
Löwen
, “
A density functional approach to ferrogels
,”
J. Phys.: Condens. Matter
29
,
275102
(
2017
).
125.
S.
Goh
,
A. M.
Menzel
, and
H.
Löwen
, “
Dynamics in a one-dimensional ferrogel model: Relaxation, pairing, shock-wave propagation
,”
Phys. Chem. Chem. Phys.
20
,
15037
15051
(
2018
).
126.
A. M.
Menzel
, “
Mesoscopic characterization of magnetoelastic hybrid materials: Magnetic gels and elastomers, their particle-scale description, and scale-bridging links
,”
Arch. Appl. Mech.
89
,
17
45
(
2019
).
127.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon Press
,
Oxford
,
1986
).
128.
J. D.
Jackson
,
Classical Electrodynamics
(
John Wiley & Sons
,
New Jersey
,
2012
).
129.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
130.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Science & Business Media
,
The Netherlands
,
2012
).
131.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Courier Corporation
,
2013
).
132.
F.
Balboa-Usabiaga
,
B.
Kallemov
,
B.
Delmotte
,
A.
Bhalla
,
B.
Griffith
, and
A.
Donev
, “
Hydrodynamics of suspensions of passive and active rigid particles: A rigid multiblob approach
,”
Commun. Appl. Math. Comput. Sci.
11
,
217
296
(
2017
).
133.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes
(
Cambridge University Press Cambridge
,
1989
), Vol. 2.
134.
A.
Daddi-Moussa-Ider
,
A.
Guckenberger
, and
S.
Gekle
, “
Long-lived anomalous thermal diffusion induced by elastic cell membranes on nearby particles
,”
Phys. Rev. E
93
,
012612
(
2016
).
135.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
, and
S.
Gekle
, “
Mobility of an axisymmetric particle near an elastic interface
,”
J. Fluid Mech.
811
,
210
233
(
2017
).
136.
A.
Daddi-Moussa-Ider
, “
Diffusion of nanoparticles nearby elastic cell membranes: A theoretical study
,” Ph.D. thesis,
University of Bayreuth
,
2017
.
137.
A.
Daddi-Moussa-Ider
and
S.
Gekle
, “
Brownian motion near an elastic cell membrane: A theoretical study
,”
Eur. Phys. J. E
41
,
19
(
2018
).
138.
A.
Daddi-Moussa-Ider
,
B.
Rallabandi
,
S.
Gekle
, and
H. A.
Stone
, “
A reciprocal theorem for the prediction of the normal force induced on a particle translating parallel to an elastic membrane
,”
Phys. Rev. Fluids
3
,
084101
(
2018
).
139.
W.
Rudin
,
Principles of Mathematical Analysis
(
McGraw-Hill
,
New York
,
1976
), Vol. 3.
140.
K.
Kumar
, “
On expanding the exponential
,”
J. Math. Phys.
6
,
1928
1934
(
1965
).
141.
S.
Timoshenko
and
Woinowsky-Krieger
,
Theory of Plates and Shells
(
McGraw-Hill
,
New York
,
1959
), Vol. 2.
142.
R.
Bracewell
,
The Fourier Transform and its Applications
(
McGraw-Hill
,
Pennsylvania
,
1999
).
143.
D. V.
Widder
,
Laplace Transform (PMS-6)
(
Princeton University Press
,
New Jersey
,
2015
).
144.
A.
Sommerfeld
,
Partial Differential Equations in Physics
(
Academic Press
,
1949
), Vol. 1.
145.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1972
), Vol. 5.
You do not currently have access to this content.