Accurate intermolecular potential-energy surfaces (IPESs) for the ground and first excited states of the Sr-H2 and Yb-H2 complexes were calculated. After an extensive methodological study, the coupled cluster with single, double, and non-iterative triple excitation method with the Douglas-Kroll-Hess Hamiltonian and correlation-consistent basis sets of triple-ζ quality extended with 2 sets of diffuse functions and a set of midbond functions were chosen. The obtained ground-state IPESs are similar in both complexes, being relatively isotropic with two minima and two transition states (equivalent by symmetry). The global minima correspond to the collinear geometries with R = 5.45 and 5.10 Å and energies of −27.7 and −31.7 cm−1 for the Sr-H2 and Yb-H2 systems, respectively. The calculated surfaces for the Sr(3P)-H2 and Yb(3P)-H2 states are deeper and more anisotropic, and they exhibit similar patterns within both complexes. The deepest surfaces, where the singly occupied p-orbital of the metal atom is perpendicular to the intermolecular axis, are characterised by the global minima of ca. −2053 and −2260 cm−1 in the T-shape geometries at R = 2.41 and 2.29 Å for Sr-H2 and Yb-H2, respectively. Additional calculations for the complexes of Sr and Yb with the He atom revealed a similar, strong dependence of the interaction energy on the orientation of the p-orbital in the Sr(3P)-He and Yb(3P)-He states.

1.
A.
Kramida
,
Yu.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd [2018, November 21],
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2018
.
2.
S. R.
Langhoff
,
C. W.
Bauschlicher
, Jr.
, and
H.
Partridge
,
Int. J. Quantum Chem.
26
,
457
(
1984
).
3.
Y.
Takasu
,
K.
Honda
,
K.
Komori
,
T.
Kuwamoto
,
M.
Kumakura
,
Y.
Takahashi
, and
T.
Yabuzaki
,
Phys. Rev. Lett.
90
,
023003
(
2003
).
4.
Y.
Takasu
,
K.
Maki
,
K.
Komori
,
T.
Takano
,
K.
Honda
,
M.
Kumakura
,
T.
Yabuzaki
, and
Y.
Takahashi
,
Phys. Rev. Lett.
91
,
040404
(
2003
).
5.
Y. N.
Martinez de Escobar
,
P. G.
Mickelson
,
M.
Yan
,
B. J.
DeSalvo
,
S. B.
Nagel
, and
T. C.
Killian
,
Phys. Rev. Lett.
103
,
200402
(
2009
).
6.
S.
Stellmer
,
M. K.
Tey
,
B.
Huang
,
R.
Grimm
, and
F.
Schreck
,
Phys. Rev. Lett.
103
,
200401
(
2009
).
7.
A.
Dareau
,
M.
Scholl
,
Q.
Beaufils
,
D.
Döring
,
J.
Beugnon
, and
F.
Gerbier
,
Phys. Rev. A
91
,
023626
(
2015
).
8.
A. J.
Daley
,
M. M.
Boyd
,
J.
Ye
, and
P.
Zoller
,
Phys. Rev. Lett.
101
,
170504
(
2008
).
9.
A. V.
Gorshkov
,
A. M.
Rey
,
A. J.
Daley
,
M. M.
Boyd
,
J.
Ye
,
P.
Zoller
, and
M. D.
Lukin
,
Phys. Rev. Lett.
102
,
110503
(
2009
).
10.
T.
Fukuhara
,
Y.
Takasu
,
M.
Kumakura
, and
Y.
Takahashi
,
Phys. Rev. Lett.
98
,
030401
(
2007
).
11.
12.
K.
Tsigutkin
,
D.
Dounas-Frazer
,
A.
Family
,
J. E.
Stalnaker
,
V. V.
Yashchuk
, and
D.
Budker
,
Phys. Rev. Lett.
103
,
071601
(
2009
).
13.
Y.
Takasu
,
K.
Komori
,
K.
Honda
,
M.
Kumakura
,
T.
Yabuzaki
, and
Y.
Takahashi
,
Phys. Rev. Lett.
93
,
123202
(
2004
).
14.
S.
Tojo
,
M.
Kitagawa
,
K.
Enomoto
,
Y.
Kato
,
Y.
Takasu
,
M.
Kumakura
, and
Y.
Takahashi
,
Phys. Rev. Lett.
96
,
153201
(
2006
).
15.
K.
Enomoto
,
M.
Kitagawa
,
K.
Kasa
,
S.
Tojo
, and
Y.
Takahashi
,
Phys. Rev. Lett.
98
,
203201
(
2007
).
16.
H. S.
Margolis
,
J. Phys. B: At., Mol. Opt. Phys.
42
,
154017
(
2009
).
17.
A. D.
Ludlow
,
M. M.
Boyd
,
J.
Ye
,
E.
Peik
, and
P. O.
Schmidt
,
Rev. Mod. Phys.
87
,
637
(
2015
).
18.
A. D.
Ludlow
,
T.
Zelevinsky
,
G. K.
Campbell
,
S.
Blatt
,
M. M.
Boyd
,
M. H. G.
de Miranda
,
M. J.
Martin
,
J. W.
Thomsen
,
S. M.
Foreman
,
J.
Ye
,
T. M.
Fortier
,
J. E.
Stalnaker
,
S. A.
Diddams
,
Y.
Le Coq
,
Z. W.
Barber
,
N.
Poli
,
N. D.
Lemke
,
K. M.
Beck
, and
C. W.
Oates
,
Science
319
,
1805
(
2008
).
19.
B. J.
Bloom
,
T. L.
Nicholson
,
J. R.
Williams
,
S. L.
Campbell
,
M.
Bishof
,
X.
Zhang
,
W.
Zhang
,
S. L.
Bromley
, and
J.
Ye
,
Nature
506
,
71
(
2014
).
20.
N.
Huntemann
,
C.
Sanner
,
B.
Lipphardt
,
C.
Tamm
, and
E.
Peik
,
Phys. Rev. Lett.
116
,
063001
(
2016
).
21.
S. L.
Campbell
,
R. B.
Hutson
,
G. E.
Marti
,
A.
Goban
,
N.
Darkwah Oppong
,
R. L.
McNally
,
L.
Sonderhouse
,
J. M.
Robinson
,
W.
Zhang
,
B. J.
Bloom
, and
J.
Ye
,
Science
358
,
90
(
2017
).
22.
Z. W.
Barber
,
C. W.
Hoyt
,
C. W.
Oates
,
L.
Hollberg
,
A. V.
Taichenachev
, and
V. I.
Yudin
,
Phys. Rev. Lett.
96
,
083002
(
2006
).
23.
M.
Takamoto
,
I.
Ushijima
,
M.
Das
,
N.
Nemitz
,
T.
Ohkubo
,
K.
Yamanaka
,
N.
Ohmae
,
T.
Takano
,
T.
Akatsuka
,
A.
Yamaguchi
, and
H.
Katori
,
C. R. Phys.
16
,
489
(
2015
), The measurement of time/La mesure du temps.
24.
R.
Le Targat
,
L.
Lorini
,
Y.
Le Coq
,
M.
Zawada
,
J.
Guéna
,
M.
Abgrall
,
M.
Gurov
,
P.
Rosenbusch
,
D. G.
Rovera
,
B.
Nagórny
,
R.
Gartman
,
P. G.
Westergaard
,
M. E.
Tobar
,
M.
Lours
,
G.
Santarelli
,
A.
Clairon
,
S.
Bize
,
P.
Laurent
,
P.
Lemonde
, and
J.
Lodewyck
,
Nat. Commun.
4
,
2109
(
2013
).
25.
J.
Grotti
,
S.
Koller
,
S.
Vogt
,
S.
Häfner
,
U.
Sterr
,
C.
Lisdat
,
H.
Denker
,
C.
Voigt
,
L.
Timmen
,
A.
Rolland
,
F. N.
Baynes
,
H. S.
Margolis
,
M.
Zampaolo
,
P.
Thoumany
,
M.
Pizzocaro
,
B.
Rauf
,
F.
Bregolin
,
A.
Tampellini
,
P.
Barbieri
,
M.
Zucco
,
G. A.
Costanzo
,
C.
Clivati
,
F.
Levi
, and
D.
Calonico
,
Nat. Phys.
14
,
437
(
2018
).
26.
27.
A. C.
Vutha
,
T.
Kirchner
, and
P.
Dubé
,
Phys. Rev. A
96
,
022704
(
2017
).
28.
T.
Rosenband
,
D. B.
Hume
,
P. O.
Schmidt
,
C. W.
Chou
,
A.
Brusch
,
L.
Lorini
,
W. H.
Oskay
,
R. E.
Drullinger
,
T. M.
Fortier
,
J. E.
Stalnaker
,
S. A.
Diddams
,
W. C.
Swann
,
N. R.
Newbury
,
W. M.
Itano
,
D. J.
Wineland
, and
J. C.
Bergquist
,
Science
319
,
1808
(
2008
).
29.
P.
Dubé
,
A. A.
Madej
,
Z.
Zhou
, and
J. E.
Bernard
,
Phys. Rev. A
87
,
023806
(
2013
).
30.
R. J.
Le Roy
and
J. M.
Hutson
,
J. Chem. Phys.
86
,
837
(
1987
).
31.
P.
Jankowski
and
K.
Szalewicz
,
J. Chem. Phys.
123
,
104301
(
2005
).
32.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., MOLPRO, version 2012.1, a package of ab initio programs, see: http://www.molpro.net,
2012
.
33.
A.
Wolf
,
M.
Reiher
, and
B. A.
Hess
,
J. Chem. Phys.
117
,
9215
(
2002
).
34.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
2037
(
2004
).
35.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
10945
(
2004
).
36.
J.
Kłos
,
G.
Chałasiński
, and
M. M.
Szczȩśniak
,
Int. J. Quantum Chem.
90
,
1038
(
2002
).
37.
S.
Atahan
,
J.
Kłos
,
P. S.
Żuchowski
, and
M. H.
Alexander
,
Phys. Chem. Chem. Phys.
8
,
4420
(
2006
).
38.
M.
Hapka
,
G.
Chałasiński
,
J.
Kłos
, and
P. S.
Żuchowski
,
J. Chem. Phys.
139
,
014307
(
2013
).
39.
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
90
,
1730
(
1989
).
40.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
41.
Q.
Lu
and
K. A.
Peterson
,
J. Chem. Phys.
145
,
054111
(
2016
).
42.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
43.
W. A.
de Jong
,
R. J.
Harrison
, and
D. A.
Dixon
,
J. Chem. Phys.
114
,
48
(
2001
).
44.
P.-O.
Widmark
,
P.-Å.
Malmqvist
, and
B. O.
Roos
,
Theor. Chim. Acta
77
,
291
(
1990
).
45.
B. O.
Roos
,
R.
Lindh
,
P. Å.
Malmqvist
,
V.
Veryazov
,
P.-O.
Widmark
, and
A. C.
Borin
,
J. Phys. Chem. A
112
,
11431
(
2008
).
46.
X.
Cao
and
M.
Dolg
,
J. Chem. Phys.
115
,
7348
(
2001
).
47.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
48.
J. G.
Hill
and
K. A.
Peterson
,
J. Chem. Phys.
147
,
244106
(
2017
).
49.
F.-M.
Tao
and
Y.-K.
Pan
,
J. Chem. Phys.
97
,
4989
(
1992
).
50.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
2975
(
1994
).
51.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
52.
M.
Jeziorska
,
R.
Bukowski
,
W.
Cencek
,
M.
Jaszuński
,
B.
Jeziorski
, and
K.
Szalewicz
,
Collect. Czech. Chem. Commun.
68
,
463
(
2003
).
53.
K.
Patkowski
,
J. Chem. Phys.
137
,
034103
(
2012
).

Supplementary Material

You do not currently have access to this content.