In order to circumvent numerical inaccuracy originating from the singularity of nonadiabatic coupling terms (NACTs), we need to perform kinetically coupled adiabatic to potentially coupled diabatic transformation of the nuclear Schrödinger Equation. Such a transformation is difficult to achieve for higher dimensional sub-Hilbert spaces due to inherent complicacy of adiabatic to diabatic transformation (ADT) equations. Nevertheless, detailed expressions of ADT equations are formulated for six coupled electronic states for the first time and their validity is extensively examined for a well-known radical cation, namely, 1,3,5-C6H3F3+ (TFBZ+). While implementing this formulation, we compute ab initio adiabatic potential energy surfaces (PESs) and NACTs within the low-lying six electronic states (X̃2E, Ã2A2, B̃2E, and C̃2A2), where several types of nonadiabatic interactions, like Jahn-Teller conical intersections (CI), accidental CIs, accidental seams (series of degenerate points), and pseudo Jahn-Teller interactions can be observed over the Franck-Condon region of nuclear configuration space. Those interactions are depicted by exploring degenerate components of C–C asymmetric stretching, C–C symmetric stretching, and C–C–C scissoring motion (Q9x, Q9y, Q10x, Q10y, Q12x, and Q12y) to compute complete active space self-consistent field level adiabatic PESs and NACTs as implemented in the MOLPRO quantum chemistry package. Subsequently, we perform the ADT using our newly devised fifteen (15) ADT equations to locate the position of CIs, verify the quantization of NACTs, and to construct highly accurate diabatic PESs.

1.
M.
Born
and
J. R.
Oppenheimer
,
Ann. Phys.
84
,
457
(
1927
).
2.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
Oxford
,
1954
).
3.
M.
Baer
,
G.
Niedner-Schatteburg
, and
J.
Toennies
,
J. Chem. Phys.
91
,
4169
(
1989
).
4.
V.
Sidis
,
Adv. Chem. Phys.
82
,
73
(
1992
).
5.
F.
Aguillon
,
M.
Sizun
,
V.
Sidis
,
G. D.
Billing
, and
N.
Markovic
,
J. Chem. Phys.
104
,
4530
(
1996
).
6.
R.
Baer
,
D.
Charutz
,
R.
Kosloff
, and
M.
Baer
,
J. Chem. Phys.
105
,
9141
(
1996
).
7.
S.
Adhikari
and
G. D.
Billing
,
J. Chem. Phys.
111
,
40
(
1999
).
8.
A. J. C.
Varandas
and
Z. R.
Xu
,
J. Chem. Phys.
112
,
2121
(
2000
).
9.
Conical Intersections: Electronic Structure, Dynamics and Spectroscopy
, Volume 15 Advanced Series in Physical Chemistry, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
Singapore
,
2004
).
10.
J. D.
Coe
and
T. J.
Martinez
,
J. Am. Chem. Soc.
127
,
4560
(
2005
).
11.
G. A.
Worth
,
M. A.
Robb
, and
B.
Lasborne
,
Mol. Phys.
106
,
2077
(
2008
).
12.
H.
Hellmann
,
Einfuhrang in die Quantenchemie
(
Franz Duetiche
,
Leipzig, Germany
,
1937
).
13.
14.
H. C.
Longuet-Higgins
,
Adv. Spectrosc.
2
,
429
(
1961
).
15.
G.
Herzberg
and
H. C.
Longuet-Higgins
,
Discuss. Faraday Soc.
35
,
77
(
1963
).
16.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
70
,
2284
(
1979
).
17.
A. J. C.
Varandas
,
J.
Tennyson
, and
J. N.
Murrel
,
Chem. Phys. Lett.
61
,
431
(
1979
).
18.
S.
Mukherjee
,
S.
Bandyopadhyay
,
A. K.
Paul
, and
S.
Adhikari
,
J. Phys. Chem. A
117
,
3475
(
2013
).
19.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
).
20.
B. K.
Kendrick
,
C. A.
Mead
, and
D. G.
Truhlar
,
Chem. Phys.
277
,
31
(
2002
).
21.
N.
Matsunaga
and
D. R.
Yarkony
,
Mol. Phys.
93
,
79
(
1998
).
22.
24.
M.
Baer
and
R.
Englman
,
Mol. Phys.
75
,
293
(
1992
).
25.
A.
Alijah
and
M.
Baer
,
J. Phys. Chem. A
104
,
389
(
2000
).
26.
D. R.
Yarkony
,
J. Chem. Phys.
105
,
10456
(
1996
).
27.
W. D.
Hobey
and
A. D.
Mclachlan
,
J. Chem. Phys.
33
,
1695
(
1960
).
28.
29.
M.
Baer
,
Beyond Born-Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
(
Wiley-Interscience
,
NJ
,
2006
).
30.
Z. H.
Top
and
M.
Baer
,
J. Chem. Phys.
66
,
1363
(
1977
).
31.
M.
Baer
,
S. H.
Lin
,
A.
Alijah
,
S.
Adhikari
, and
G. D.
Billing
,
Phys. Rev. A
62
,
32506-1
(
2000
).
32.
S.
Adhikari
,
G. D.
Billing
,
A.
Alijah
,
S. H.
Lin
, and
M.
Baer
,
Phys. Rev. A
62
,
32507
(
2000
).
33.
B.
Sarkar
and
S.
Adhikari
,
J. Chem. Phys.
124
,
074101-1
(
2006
).
34.
B.
Sarkar
and
S.
Adhikari
,
J. Phys. Chem. A
112
,
9868
(
2008
).
35.
S.
Mukherjee
,
B.
Mukherjee
, and
S.
Adhikari
,
J. Phys. Chem. A
121
,
6314
(
2017
).
36.
A. K.
Paul
,
S.
Sardar
,
B.
Sarkar
, and
S.
Adhikari
,
J. Chem. Phys.
131
,
124312-1
(
2009
).
37.
A. K.
Paul
,
S.
Ray
,
D.
Mukhopadhyay
, and
S.
Adhikari
,
J. Chem. Phys.
135
,
034107-1
(
2011
).
38.
A.
Das
,
D.
Mukhopadhyay
,
S.
Adhikari
, and
M.
Baer
,
J. Chem. Phys.
133
,
084107-1
(
2010
).
39.
S.
Mukherjee
and
S.
Adhikari
,
Chem. Phys.
440
,
106
(
2014
).
40.
S.
Mukherjee
,
D.
Mukhopadhyay
, and
S.
Adhikari
,
J. Chem. Phys.
141
,
204306-1
(
2014
).
41.
S.
Mukherjee
,
B.
Mukherjee
,
S.
Sardar
, and
S.
Adhikari
,
J. Chem. Phys.
143
,
244307-1
(
2015
).
42.
B.
Mukherjee
,
S.
Mukherjee
,
S.
Sardar
,
K. R.
Shamasundar
, and
S.
Adhikari
,
Mol. Phys.
115
,
2833
(
2017
).
43.
S.
Ghosh
,
S.
Mukherjee
,
B.
Mukherjee
,
S.
Mandal
,
R.
Sharma
,
P.
Chaudhury
, and
S.
Adhikari
,
J. Chem. Phys.
147
,
074105
(
2017
).
44.
B.
Mukherjee
,
S.
Mukherjee
,
S.
Sardar
,
K. R.
Shamasundar
, and
S.
Adhikari
,
Chem. Phys.
515
,
350
(
2018
).
45.
S.
Sardar
,
S.
Mukherjee
,
A. K.
Paul
, and
S.
Adhikari
,
Chem. Phys.
416
,
11
(
2013
).
46.
T.
Mondal
and
S.
Mahapatra
,
Phys. Chem. Chem. Phys.
11
,
10867
(
2009
).
47.
R.
Gilbert
,
P.
Sauvageau
, and
C.
Sandorfy
,
Chem. Phys. Lett.
17
,
465
(
1972
).
48.
A. W.
Potts
,
W. C.
Price
,
D. G.
Streets
, and
T. A.
Williams
,
Faraday Discuss. Chem. Soc.
54
,
168
(
1972
).
49.
M. H.
Palmer
,
W.
Moyes
,
M.
Spiers
, and
J. N. A.
Ridyard
,
J. Mol. Struct.
49
,
105
(
1978
).
50.
G.
Bieri
,
L.
Åsbrink
, and
W. V.
Niessen
,
J. Electron Spectrosc. Relat. Phenom.
23
,
281
(
1981
).
51.
T. A.
Miller
and
V. E.
Bondybey
,
Chem. Phys. Lett.
58
,
454
(
1978
).
52.
L.
Yu
,
S. C.
Foster
,
J. M.
Williamson
, and
T. A.
Miller
,
J. Chem. Phys.
92
,
5794
(
1990
).
53.
B.
Cage
,
J.
Friedrich
,
R. B.
Little
,
Y.
Wang
,
M. A.
McFarland
,
C. L.
Hendrickson
,
N.
Dalal
, and
A. G.
Marshall
,
Chem. Phys. Lett.
394
,
188
(
2004
).
54.
C. H.
Kwon
and
M. S.
Kim
,
J. Chem. Phys.
121
,
2622
(
2004
).
55.
Y.
Tsuchiya
,
M.
Fujii
, and
M.
Ito
,
J. Chem. Phys.
90
,
6965
(
1989
).
56.
J. P.
Maier
and
F.
Thommen
,
Chem. Phys.
57
,
319
(
1981
).
57.
G.
Dujardin
,
S.
Leach
,
O.
Dutuit
,
T.
Govers
, and
P. M.
Guyon
,
J. Chem. Phys.
79
,
644
(
1983
).
58.
D. A.
Braden
and
B. S.
Hudson
,
J. Phys. Chem. A
104
,
982
(
2000
).
59.
V. P.
Vysotsky
,
G. E.
Salnikov
, and
L. N.
Shchegoleva
,
Int. J. Quantum Chem.
100
,
469
(
2004
).
60.
D. S.
Kummli
,
H.-M.
Frey
, and
S.
Leutwyler
,
Chem. Phys.
367
,
36
(
2010
).
61.
F.
Ramondo
,
G.
Portalone
,
A.
Domenicano
,
G.
Schultz
, and
I.
Hargittai
,
J. Mol. Struct.
269
,
367
(
1992
).
62.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
, et al., molpro, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
63.
S.
Mukherjee
,
B.
Mukherjee
,
J.
Dutta
,
S.
Sardar
, and
S.
Adhikari
,
ACS Omega
3
,
12465
(
2018
).
64.
H. A.
Jahn
and
E.
Teller
,
Proc. R. Soc.
161
,
220
(
1937
).

Supplementary Material

You do not currently have access to this content.