We investigate thermodynamic properties of supercooled water across the “no man’s land” onto the formation of amorphous ice. The calculations are aided by very long computer simulations, often more than 50 μs long, with the TIP4P/2005 model potential. Density fluctuations that arise from the proximity to a putative liquid-liquid (LL) transition at 228 K, cast a long shadow on the properties of water, both above and below the LL transition. We carry out the calculations of the quantum mechanical static and frequency-dependent specific heats by combining seminal studies of Lebowitz, Percus, and Verlet and Grest and Nagel with the harmonic approximation for the density of states. The obtained values are in quantitative agreement with all available experimental and numerical results of specific heats for both supercooled water and ice. We calculate the entropy at all the state points by integrating the specific heat. We find that the quantum corrected-contributions of intermolecular vibrational entropy dominate the excess entropy of amorphous phases over the crystal over a wide range of temperatures. Interestingly, the vibrational entropy lowers the Kauzmann temperature, TK, to 130 K, just below the experimental glass-to-liquid water transition temperature, Tg, of 136 K and the calculated Tg of 135 K in our previous study. A straightforward extrapolation of high temperature entropy from 250 K to below however would give a much higher value of TK ∼ 190 K. The calculation of Lindemann ratios shows the melting of amorphous ice ∼135 K. The amorphous state exhibits an extremely short correlation length for the distance dependence of orientational correlation.

1.
W.
Kauzmann
,
Chem. Rev.
43
,
219
256
(
1948
).
2.
F. H.
Stillinger
,
J. Chem. Phys.
88
,
7818
(
1988
).
3.
S.
Sastry
,
J. Phys. Chem. B
108
,
19698
19702
(
2004
).
4.
F. H.
Stillinger
and
P. G.
Debenedetti
,
Annu. Rev. Condens. Matter Phys.
4
,
263
285
(
2013
).
5.
J. H.
Gibbs
and
E. A.
DiMarzio
,
J. Chem. Phys.
28
,
373
383
(
1958
).
6.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
146
(
1965
).
7.
S. R.
Nagel
, in
Phase Transitions and Relaxation in Systems with Competing Energy Scales
, edited by
T.
Riste
and
D.
Sherrington
(
Kluwer Academic
,
Dordrecht
,
1993
), Vol. 415, pp.
259
283
.
8.
V.
Lubchenko
and
P. G.
Wolynes
,
Annu. Rev. Phys. Chem.
58
,
235
266
(
2007
).
9.
S.
Saito
,
B.
Bagchi
, and
I.
Ohmine
,
J. Chem. Phys.
149
,
124504
(
2018
).
10.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1-2
,
19
25
(
2015
).
11.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
12.
J.
Wong
,
D. A.
Jahn
, and
N.
Giovambattista
,
J. Chem. Phys.
143
,
074501
(
2015
).
13.
E. G.
Noya
,
C.
Menduina
,
J. L.
Aragones
, and
C.
Vega
,
J. Phys. Chem. C
111
,
15877
15888
(
2007
).
14.
M.
Cho
,
G. R.
Fleming
,
S.
Saito
,
I.
Ohmine
, and
R. M.
Stratt
,
J. Chem. Phys.
100
,
6672
6683
(
1994
).
15.
T.
Keyes
,
J. Chem. Phys.
101
,
5081
5092
(
1994
).
16.
S. D.
Bembenek
and
B. B.
Laird
,
J. Chem. Phys.
104
,
5199
5208
(
1996
).
17.
J. D.
Gezelter
,
E.
Rabani
, and
B. J.
Berne
,
J. Chem. Phys.
107
,
4618
4627
(
1997
).
18.
E.
La Nave
,
A.
Scala
,
F. W.
Starr
,
F.
Sciortino
, and
H. E.
Stanley
,
Phys. Rev. Lett.
84
,
4605
4608
(
2000
).
19.
T. S.
Grigera
,
V.
Martin-Mayor
,
G.
Parisi
, and
P.
Verrocchio
,
Nature
422
,
289
292
(
2003
).
20.
J. L.
Lebowitz
,
J. K.
Percus
, and
L.
Verlet
,
Phys. Rev.
153
,
250
254
(
1967
).
21.
R.
Kubo
,
Rep. Prog. Phys.
29
,
255
284
(
1966
).
22.
R.
Zwanzig
,
Annu. Rev. Phys. Chem.
16
,
67
102
(
1965
).
23.
G. S.
Grest
and
S. R.
Nagel
,
J. Phys. Chem.
91
,
4916
4922
(
1987
).
24.
S.
Saito
,
I.
Ohmine
, and
B.
Bagchi
,
J. Chem. Phys.
138
,
094503
(
2013
).
25.
C.
Vega
,
M. M.
Conde
,
C.
McBride
,
J. L. F.
Abascal
,
E. G.
Noya
,
R.
Ramirez
, and
L. M.
Sesé
,
J. Chem. Phys.
132
,
046101
(
2010
).
26.
C. A.
Angell
,
M.
Oguni
, and
W. J.
Sichina
,
J. Phys. Chem.
86
,
998
1002
(
1982
).
27.
R.
Feistel
and
W.
Wagner
,
J. Phys. Chem. Ref. Data
35
,
1021
1047
(
2006
).
28.
F. W.
Starr
,
F.
Sciortino
, and
H. E.
Stanley
,
Phys. Rev. E
60
,
6757
6768
(
1999
).
29.
P. G.
Debenedetti
,
J. Phys. Condens. Matter.
15
,
R1669
R1726
(
2003
).
30.
L.
Liu
,
S. H.
Chen
,
A.
Faraone
,
C. W.
Yen
, and
C. Y.
Mou
,
Phys. Rev. Lett.
95
,
117802
(
2005
).
31.
G.
Franzese
and
H. E.
Stanley
,
J. Phys. Condens. Matter
19
,
205126
(
2007
).
32.
33.
D.
Corradini
,
M.
Rovere
, and
P.
Gallo
,
J. Chem. Phys.
132
,
134508
(
2010
).
34.
J. L.
Abascal
and
C.
Vega
,
J. Chem. Phys.
133
,
234502
(
2010
).
35.
T. A.
Kesselring
,
G.
Franzese
,
S. V.
Buldyrev
,
H. J.
Herrmann
, and
H. E.
Stanley
,
Sci. Rep.
2
,
474
479
(
2012
).
36.
P. H.
Poole
,
R. K.
Bowles
,
I.
Saika-Voivod
, and
F.
Sciortino
,
J. Chem. Phys.
138
,
034505
(
2013
).
37.
W. F.
Giauque
and
J. W.
Stout
,
J. Am. Chem. Soc.
58
,
1144
1150
(
1936
).
38.
L.
Pauling
,
J. Am. Chem. Soc.
57
,
2680
2684
(
1935
).
39.
K.
Amann-Winkel
,
C.
Gainaru
,
P. H.
Handle
,
M.
Seidl
,
H.
Nelson
,
R.
Bohmer
, and
T.
Loerting
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
17720
17725
(
2013
).
40.
R.
Garcia Fernandez
,
J. L.
Abascal
, and
C.
Vega
,
J. Chem. Phys.
124
,
144506
(
2006
).
41.
P.
Kumar
,
K. T.
Wikfeldt
,
D.
Schlesinger
,
L. G.
Pettersson
, and
H. E.
Stanley
,
Sci. Rep.
3
,
1980
(
2013
).
42.
F. A.
Lindemann
,
Z. Phys.
11
,
609
615
(
1910
).
43.
J. P.
Stoessel
and
P. G.
Wolynes
,
J. Chem. Phys.
80
,
4502
4512
(
1984
).
44.
K. S.
Schweizer
and
E. J.
Saltzman
,
J. Chem. Phys.
119
,
1181
1196
(
2003
).
You do not currently have access to this content.