Biochemical reactions often occur at low copy numbers but at once in crowded and diverse environments. Space and stochasticity therefore play an essential role in biochemical networks. Spatial-stochastic simulations have become a prominent tool for understanding how stochasticity at the microscopic level influences the macroscopic behavior of such systems. While particle-based models guarantee the level of detail necessary to accurately describe the microscopic dynamics at very low copy numbers, the algorithms used to simulate them typically imply trade-offs between computational efficiency and biochemical accuracy. eGFRD (enhanced Green’s Function Reaction Dynamics) is an exact algorithm that evades such trade-offs by partitioning the N-particle system into MN analytically tractable one- and two-particle systems; the analytical solutions (Green’s functions) then are used to implement an event-driven particle-based scheme that allows particles to make large jumps in time and space while retaining access to their state variables at arbitrary simulation times. Here we present “eGFRD2,” a new eGFRD version that implements the principle of eGFRD in all dimensions, thus enabling efficient particle-based simulation of biochemical reaction-diffusion processes in the 3D cytoplasm, on 2D planes representing membranes, and on 1D elongated cylinders representative of, e.g., cytoskeletal tracks or DNA; in 1D, it also incorporates convective motion used to model active transport. We find that, for low particle densities, eGFRD2 is up to 6 orders of magnitude faster than conventional Brownian dynamics. We exemplify the capabilities of eGFRD2 by simulating an idealized model of Pom1 gradient formation, which involves 3D diffusion, active transport on microtubules, and autophosphorylation on the membrane, confirming recent experimental and theoretical results on this system to hold under genuinely stochastic conditions.

1.
J.
Yu
,
J.
Xiao
,
X.
Ren
,
K.
Lao
, and
X. S.
Xie
,
Science
311
,
1600
(
2006
).
2.
J.
Elf
,
G.-W.
Li
, and
X. S.
Xie
,
Science
316
,
1191
(
2007
).
3.
J.
Simicevic
,
A. W.
Schmid
,
P. A.
Gilardoni
,
B.
Zoller
,
S. K.
Raghav
,
I.
Krier
,
C.
Gubelmann
,
F.
Lisacek
,
F.
Naef
,
M.
Moniatte
, and
B.
Deplancke
,
Nat. Methods
10
,
570
(
2013
).
4.
G.-W.
Li
,
D.
Burkhardt
,
C.
Gross
, and
J.
Weissman
,
Cell
157
,
624
(
2014
).
5.
F.
Garza de Leon
,
L.
Sellars
,
M.
Stracy
,
S. J. W.
Busby
, and
A. N.
Kapanidis
,
Biophys. J.
112
,
1316
(
2017
).
6.
S. B.
Zimmerman
and
A. P.
Minton
,
Annu. Rev. Biophys. Biomol. Struct.
22
,
27
(
1993
).
7.
R. J.
Ellis
,
Curr. Opin. Struct. Biol.
11
,
114
(
2001
).
8.
R. J.
Ellis
,
Trends Biochem. Sci.
26
,
597
(
2001
).
9.
G.-W.
Li
,
O. G.
Berg
, and
J.
Elf
,
Nat. Phys.
5
,
294
(
2009
).
11.
M.
Długosz
and
J.
Trylska
,
BMC Biophys.
4
,
3
(
2011
).
12.
J. S.
van Zon
,
M. J.
Morelli
,
S.
Tǎnase-Nicola
, and
P. R.
ten Wolde
,
Biophys. J.
91
,
4350
(
2006
).
13.
B.
Meyer
,
O.
Bénichou
,
Y.
Kafri
, and
R.
Voituriez
,
Biophys. J.
102
,
2186
(
2012
).
14.
K.
Kaizu
,
W.
de Ronde
,
J.
Paijmans
,
K.
Takahashi
,
F.
Tostevin
, and
P. R.
ten Wolde
,
Biophys. J.
106
,
976
(
2014
).
15.
Y. M.
Wang
,
R. H.
Austin
, and
E. C.
Cox
,
Phys. Rev. Lett.
97
,
048302
(
2006
).
16.
I.
Bonnet
,
A.
Biebricher
,
P.
Pierre-Louis
,
C.
Loverdo
,
O.
Bénichou
,
R.
Voituriez
,
C.
Escudé
,
W.
Wende
,
A.
Pingoud
, and
P.
Desbiolles
,
Nucleic Acids Res.
36
,
4118
(
2008
).
17.
A.
Tafvizi
,
F.
Huang
,
A. R.
Fersht
,
L. A.
Mirny
, and
A. M.
van Oijen
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
563
(
2011
).
18.
P.
Hammar
,
P.
Leroy
,
A.
Mahmutovic
,
E. G.
Marklund
,
O. G.
Berg
, and
J.
Elf
,
Science
336
,
1595
(
2012
).
19.
B.
Nguyen
,
J.
Sokoloski
,
R.
Galletto
,
E. L.
Elson
,
M. S.
Wold
, and
T. M.
Lohman
,
J. Mol. Biol.
426
,
3246
(
2014
).
20.
C.
Loverdo
,
O.
Bénichou
,
M.
Moreau
, and
R.
Voituriez
,
Nat. Phys.
4
,
134
(
2008
).
21.
C.
Loverdo
,
O.
Bénichou
,
R.
Voituriez
,
A.
Biebricher
,
I.
Bonnet
, and
P.
Desbiolles
,
Phys. Rev. Lett.
102
,
188101
(
2009
).
22.
C.
Loverdo
,
O.
Bénichou
,
M.
Moreau
, and
R.
Voituriez
,
Phys. Rev. E
80
,
031146
(
2009
).
23.
O.
Bénichou
,
C.
Chevalier
,
J.
Klafter
,
B.
Meyer
, and
R.
Voituriez
,
Nat. Chem.
2
,
472
(
2010
).
24.
O.
Bénichou
,
C.
Loverdo
,
M.
Moreau
, and
R.
Voituriez
,
Rev. Mod. Phys.
83
,
81
(
2011
).
25.
J.
Paijmans
and
P. R.
ten Wolde
,
Phys. Rev. E
90
,
032708
(
2014
).
26.
K.
Schwarz
,
Y.
Schröder
,
B.
Qu
,
M.
Hoth
, and
H.
Rieger
,
Phys. Rev. Lett.
117
,
068101
(
2016
).
27.
T.
Gregor
,
D. W.
Tank
,
E. F.
Wieschaus
, and
W.
Bialek
,
Cell
130
,
153
(
2007
).
28.
S. C.
Little
,
M.
Tikhonov
, and
T.
Gregor
,
Cell
154
,
789
(
2013
).
29.
T.
Erdmann
,
M.
Howard
, and
P. R.
ten Wolde
,
Phys. Rev. Lett.
103
,
258101
(
2009
).
30.
T. R.
Sokolowski
,
T.
Erdmann
, and
P. R.
ten Wolde
,
PLoS Comput. Biol.
8
,
e1002654
(
2012
).
31.
T. R.
Sokolowski
and
G.
Tkačik
,
Phys. Rev. E
91
,
062710
(
2015
).
32.
P.
Hillenbrand
,
U.
Gerland
, and
G.
Tkačik
,
PLoS One
11
,
e0163628
(
2016
).
33.
A.
Buchner
,
F.
Tostevin
, and
U.
Gerland
,
Phys. Rev. Lett.
110
,
208104
(
2013
).
34.
A.
Buchner
,
F.
Tostevin
,
F.
Hinzpeter
, and
U.
Gerland
,
J. Chem. Phys.
139
,
135101
(
2013
).
35.
M.
Castellana
,
M. Z.
Wilson
,
Y.
Xu
,
P.
Joshi
,
I. M.
Cristea
,
J. D.
Rabinowitz
,
Z.
Gitai
, and
N. S.
Wingreen
,
Nat. Biotechnol.
32
,
1011
(
2014
).
36.
A.
Jilkine
,
S. B.
Angenent
,
L. F.
Wu
, and
S. J.
Altschuler
,
PLoS Comput. Biol.
7
,
e1002271
(
2011
).
37.
M.
Kochańczyk
,
J.
Jaruszewicz
, and
T.
Lipniacki
,
J. R. Soc., Interface
10
,
20130151
(
2013
).
38.
M.
Schmick
and
P. I. H.
Bastiaens
,
Cell
156
,
1132
(
2014
).
39.
M. J.
Lawson
,
L.
Petzold
, and
A.
Hellander
,
J. R. Soc., Interface
12
,
20150054
(
2015
).
40.
P.
Bressloff
and
B.
Xu
,
SIAM J. Appl. Math.
75
,
652
(
2015
).
41.
N.
Muller
,
M.
Piel
,
V.
Calvez
,
R.
Voituriez
,
J.
Gonçalves-Sá
,
C.-L.
Guo
,
X.
Jiang
,
A.
Murray
, and
N.
Meunier
,
PLoS Comput. Biol.
12
,
e1004795
(
2016
).
42.
P.
Foteinopoulos
and
B. M.
Mulder
,
PLoS One
12
,
e0184706
(
2017
).
43.
S. J.
Altschuler
,
S. B.
Angenent
,
Y.
Wang
, and
L. F.
Wu
,
Nature
454
,
886
(
2008
).
44.
S. B.
van Albada
and
P. R.
ten Wolde
,
PLoS Comput. Biol.
3
,
e195
(
2007
).
45.
S. B.
van Albada
and
P. R.
ten Wolde
,
PLoS Comput. Biol.
5
,
e1000378
(
2009
).
46.
J.
Elf
and
M.
Ehrenberg
,
Syst. Biol.
1
,
230
(
2004
).
47.
M. J.
Morelli
and
P. R.
ten Wolde
,
J. Chem. Phys.
129
,
054112
(
2008
).
48.
K.
Takahashi
,
S.
Tǎnase-Nicola
, and
P. R.
ten Wolde
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
2473
(
2010
).
49.
K.
Aokia
,
M.
Yamada
,
K.
Kunida
,
S.
Yasuda
, and
M.
Matsuda
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
12675
(
2011
).
50.
O.
Dushek
,
P. A.
vanderMerwe
, and
V.
Shahrezaei
,
Biophys. J.
100
,
1189
(
2011
).
51.
I. V.
Gopich
and
A.
Szabo
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
19784
(
2013
).
52.
I. V.
Gopich
and
A.
Szabo
,
Protein Sci.
25
,
244
(
2015
).
53.
S. D.
Lawley
and
J. P.
Keener
,
Biophys. J.
111
,
2317
(
2016
).
54.
T. E.
Ouldridge
and
P. R.
ten Wolde
,
Biophys. J.
107
,
2425
(
2014
).
55.
J.
Das
,
M.
Ho
,
J.
Zikherman
,
C.
Govern
,
M.
Yang
,
A.
Weiss
,
A. K.
Chakraborty
, and
J. P.
Roose
,
Cell
136
,
337
(
2009
).
56.
J.
Das
,
M.
Kardar
, and
A. K.
Chakraborty
,
J. Chem. Phys.
130
,
245102
(
2009
).
57.
M.
Wehrens
,
P. R.
ten Wolde
, and
A.
Mugler
,
J. Chem. Phys.
141
,
205102
(
2014
).
58.
P. J.
Mlynarczyk
,
R. H.
Pullen III
, and
S. M.
Abel
,
J. Chem. Phys.
144
,
015102
(
2016
).
59.
T.
Tian
,
A.
Harding
,
K.
Inder
,
S.
Plowman
,
R. G.
Parton
, and
J. F.
Hancock
,
Nat. Cell Biol.
9
,
905
(
2007
).
60.
T.
Gurry
,
O.
Kahramanoğullar
, and
R. G.
Endres
,
PLoS One
4
,
e6148
(
2009
).
61.
A.
Mugler
,
A.
Gotway Bailey
,
K.
Takahashi
, and
P. R.
ten Wolde
,
Biophys. J.
102
,
1069
(
2012
).
62.
A.
Mugler
,
F.
Tostevin
, and
P. R.
ten Wolde
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
5927
(
2013
).
63.
E.
Roob
, III
,
N.
Trendel
,
P. R.
ten Wolde
, and
A.
Mugler
,
Biophys. J.
110
,
1661
(
2016
).
64.
M.
Morelli
,
R.
Allen
, and
P. R.
ten Wolde
,
Biophys. J.
101
,
2882
(
2011
).
65.
M. T.
Klann
,
A.
Lapin
, and
M.
Reuss
,
Biophys. J.
96
,
5122
(
2009
).
66.
M. T.
Klann
,
A.
Lapin
, and
M.
Reuss
,
BMC Syst. Biol.
5
,
71
(
2011
).
67.
P. R.
ten Wolde
and
A.
Mugler
, “
New models of the cell nucleus: Crowding, entropic forces, phase separation, and fractals
,” in
International Review of Cell and Molecular Biology
, edited by
R. H. a. K. W.
Jeon
(
Academic Press
,
2014
), Vol. 307, pp.
419
442
.
68.
A.
Mugler
and
P. R.
ten Wolde
, in
Advances in Chemical Physics
, edited by
S. A.
Rice
and
A. R.
Dinner
(
John Wiley & Sons, Inc.
,
2013
), pp.
373
396
.
69.
M.
Dobrzyński
,
J. V.
Rodríguez
,
J. A.
Kaandorp
, and
J. G.
Blom
,
Bioinformatics
23
,
1969
(
2007
).
70.
T. R.
Sokolowski
and
P. R.
ten Wolde
, in
Quantitative Biology: Theory, Computational Methods, and Models
, edited by
B.
Munsky
,
W. S.
Hlavacek
, and
L. S.
Tsimring
(
The MIT Press
,
2018
), Chap. 9, pp.
149
178
.
71.
J.
Hattne
,
D.
Fange
, and
J.
Elf
,
Bioinformatics
21
,
2923
(
2005
).
72.
D.
Fange
and
J.
Elf
,
PLoS Comput. Biol.
2
,
e80
(
2006
).
73.
J.
Elf
,
A.
Doncic
, and
M.
Ehrenberg
, in
Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems
, edited by
S. M.
Bezrukov
,
H.
Frauenfelder
, and
F.
Moss
(
SPIE
,
2003
).
74.
S.
Wang
,
J.
Elf
,
S.
Hellander
, and
P.
Lötstedt
,
Bull. Math. Biol.
76
,
819
(
2013
).
75.
B.
Drawert
,
S.
Engblom
, and
A.
Hellander
,
BMC Syst. Biol.
6
,
76
(
2012
).
76.
B.
Drawert
,
M. J.
Lawson
,
L.
Petzold
, and
M.
Khammash
,
J. Chem. Phys.
132
,
074101
(
2010
).
77.
S.
Lampoudi
,
D. T.
Gillespie
, and
L. R.
Petzold
,
J. Chem. Phys.
130
,
094104
(
2009
).
78.
S.
Isaacson
and
C.
Peskin
,
SIAM J. Sci. Comput.
28
,
47
(
2006
).
79.
B.
Drawert
,
A.
Hellander
,
B.
Bales
,
D.
Banerjee
,
G.
Bellesia
,
B. J.
Daigle
, Jr.
,
G.
Douglas
,
M.
Gu
,
A.
Gupta
,
S.
Hellander
,
C.
Horuk
,
D.
Nath
,
A.
Takkar
,
S.
Wu
,
P.
Lötstedt
,
C.
Krintz
, and
L. R.
Petzold
,
PLoS Comput. Biol.
12
,
e1005220
(
2016
).
80.
I. I.
Moraru
,
J. C.
Schaff
,
B. M.
Slepchenko
,
M. L.
Blinov
,
F.
Morgan
,
A.
Lakshminarayana
,
F.
Gao
,
Y.
Li
, and
L. M.
Loew
,
IET Syst. Biol.
2
,
352
(
2008
).
81.
J. V.
Rodríguez
,
J. A.
Kaandorp
,
M.
Dobrzyński
, and
J. G.
Blom
,
Bioinformatics
22
,
1895
(
2006
).
82.
M.
Vigelius
,
A.
Lane
, and
B.
Meyer
,
Bioinformatics
27
,
288
(
2010
).
83.
D.
Gillespie
,
J. Comput. Phys.
22
,
403
(
1976
).
84.
D.
Gillespie
,
J. Chem. Phys.
81
,
2340
(
1977
).
85.
S. S.
Andrews
and
D.
Bray
,
Phys. Biol.
1
,
137
(
2004
).
86.
S. S.
Andrews
,
N. J.
Addy
,
R.
Brent
, and
A. P.
Arkin
,
PLoS Comput. Biol.
6
,
e1000705
(
2010
).
87.
J. R.
Stiles
,
D.
van Helden
,
T. M.
Bartol
,
E. E.
Salpeter
, and
M. M.
Salpeter
,
Proc. Natl. Acad. Sci. U. S. A.
93
,
5747
(
1996
).
88.
J. R.
Stiles
and
T. M.
Bartol
, in
Computational Neuroscience: Realistic Modeling for Experimentalists, Frontiers in Neuroscience
, 1st ed., edited by
E. D.
Schutter
(
CRC Press
,
2000
).
89.
K. M.
Franks
,
T. M.
Bartol
, and
T. J.
Sejnowski
,
Biophys. J.
83
,
2333
(
2002
).
90.
R.
Kerr
,
T.
Bartol
,
B.
Kaminsky
,
M.
Dittrich
,
J.
Chang
,
S.
Baden
,
T.
Sejnowski
, and
J.
Stiles
,
SIAM J. Sci. Comput.
30
,
3126
(
2008
).
91.
M. I.
Stefan
,
T. M.
Bartol
,
T. J.
Sejnowski
, and
M. B.
Kennedy
,
PLoS Comput. Biol.
10
,
e1003844
(
2014
).
92.
S. J.
Plimpton
and
A.
Slepoy
,
J. Phys.: Conf. Ser.
16
,
305
(
2005
).
93.
L.
Boulianne
,
S. A.
Assaad
,
M.
Dumontier
, and
W. J.
Gross
,
BMC Syst. Biol.
2
,
66
(
2008
).
94.
S. N. V.
Arjunan
and
M.
Tomita
,
Syst. Synth. Biol.
4
,
35
(
2009
).
95.
A.
Miyauchi
,
K.
Iwamoto
,
S. N. V.
Arjunan
, and
K.
Takahashi
, e-print arXiv:1605.03726 [q-bio] (
2016
).
96.
W.-X.
Chew
,
K.
Kaizu
,
M.
Watabe
,
S. V.
Muniandy
,
K.
Takahashi
, and
S. N. V.
Arjunan
,
Phys. Rev. E
98
,
032418
(
2018
).
97.
J.
Schöneberg
and
F.
Noé
,
PLoS One
8
,
e74261
(
2013
).
98.
J. S.
van Zon
and
P. R.
ten Wolde
,
Phys. Rev. Lett.
94
,
128103-1
(
2005
).
99.
J. S.
van Zon
and
P. R.
ten Wolde
,
J. Chem. Phys.
123
,
234910-1
(
2005
).
100.
T.
Oppelstrup
,
V. V.
Bulatov
,
G. H.
Gilmer
,
M. H.
Kalos
, and
B.
Sadigh
,
Phys. Rev. Lett.
97
,
230602
(
2006
).
101.
T.
Oppelstrup
,
V. V.
Bulatov
,
A.
Donev
,
M. H.
Kalos
,
G. H.
Gilmer
, and
B.
Sadigh
,
Phys. Rev. E
80
,
066701
(
2009
).
102.
A.
Donev
,
V. V.
Bulatov
,
T.
Oppelstrup
,
G. H.
Gilmer
,
B.
Sadigh
, and
M. H.
Kalos
,
J. Comput. Phys.
229
,
3214
(
2010
).
103.
D. T.
Gillespie
,
E.
Seitaridou
, and
C. A.
Gillespie
,
J. Chem. Phys.
141
,
234115
(
2014
).
105.
B. N.
Kholodenko
,
Nat. Rev. Mol. Cell Biol.
7
,
165
(
2006
).
106.
J. B.
Moseley
and
B. L.
Goode
,
Microbiol. Mol. Biol. Rev.
70
,
605
(
2006
).
107.
A.
Kuchler
,
M.
Yoshimoto
,
S.
Luginbuhl
,
F.
Mavelli
, and
P.
Walde
,
Nat. Nano
11
,
409
(
2016
).
108.
S.
Hellander
and
P.
Lötstedt
,
J. Comput. Phys.
230
,
3948
(
2011
).
109.
A. J.
Mauro
,
J. K.
Sigurdsson
,
J.
Shrake
,
P. J.
Atzberger
, and
S. A.
Isaacson
,
J. Comput. Phys.
259
,
536
(
2014
).
110.
A.
Hellander
,
S.
Hellander
, and
P.
Lötstedt
,
Multiscale Model. Simul.
10
,
585
(
2012
).
111.
S.
Hellander
,
J. Chem. Phys.
139
,
014103
(
2013
).
112.
J.
Bähler
and
J. R.
Pringle
,
Genes Dev.
12
,
1356
(
1998
).
113.
J. B.
Moseley
,
A.
Mayeux
,
A.
Paoletti
, and
P.
Nurse
,
Nature
459
,
857
(
2009
).
114.
S. G.
Martin
and
M.
Berthelot-Grosjean
,
Nature
459
,
852
(
2009
).
116.
M.
Vilela
,
J. J.
Morgan
, and
P. A.
Lindahl
,
PLoS Comput. Biol.
6
,
e1001036
(
2010
).
117.
O.
Hachet
,
M.
Berthelot-Grosjean
,
K.
Kokkoris
,
V.
Vincenzetti
,
J.
Moosbrugger
, and
S. G.
Martin
,
Cell
145
,
1116
(
2011
).
118.
M.
Hersch
,
O.
Hachet
,
S.
Dalessi
,
P.
Ullal
,
P.
Bhatia
,
S.
Bergmann
, and
S. G.
Martin
,
Mol. Syst. Biol.
11
,
818
(
2015
).
119.
M.
Smoluchowski
,
Ann. Phys.
353
,
1103
(
1915
).
120.
N.
Agmon
and
A.
Szabo
,
J. Chem. Phys.
92
,
5270
(
1990
).
121.
J. L.
Ross
,
M. Y.
Ali
, and
D. M.
Warshaw
,
Curr. Opin. Cell Biol.
20
,
41
(
2008
).
122.
N.
Hirokawa
,
Y.
Noda
,
Y.
Tanaka
, and
S.
Niwa
,
Nat. Rev. Mol. Cell Biol.
10
,
682
(
2009
).
123.
K. J.
Verhey
and
J. W.
Hammond
,
Nat. Rev. Mol. Cell Biol.
10
,
765
(
2009
).
124.
C.
Tischer
,
P. R.
ten Wolde
, and
M.
Dogterom
,
Biophys. J.
99
,
726
(
2010
).
125.
A.
Akhmanova
and
M.
Dogterom
,
Cell
147
,
966
(
2011
).
126.
J. A.
Hammer
, III
and
J. R.
Sellers
,
Nat. Rev. Mol. Cell Biol.
13
,
13
(
2012
).
127.
W. O.
Hancock
,
Nat. Rev. Mol. Cell Biol.
15
,
615
(
2014
).
128.
129.
F.
Huber
,
A.
Boire
,
M. P.
López
, and
G. H.
Koenderink
,
Curr. Opin. Cell Biol.
32
,
39
(
2015
).
130.
J.
Paijmans
, “
The fundamental lower bound of the noise in transcriptional regulation
,” M.S. thesis,
Univeristy of Amsterdam
,
2012
.
131.
See https://github.com/gfrd/egfrd/tree/develop for download of the code and installation instructions.
132.
P.
Bastiaens
,
M.
Caudron
,
P.
Niethammer
, and
E.
Karsenti
,
Trends Cell Biol.
16
,
125
(
2006
).
133.
P.
Niethammer
,
P.
Bastiaens
, and
E.
Karsenti
,
Science
303
,
1862
(
2004
).
134.
S. E.
Siegrist
and
C. Q.
Doe
,
Genes Dev.
21
,
483
(
2007
).
135.
S. G.
Martin
,
Trends Cell Biol.
19
,
447
(
2009
).
136.
L.
Lo Presti
and
S. G.
Martin
,
Curr. Biol.
21
,
2064
(
2011
).
137.
138.
K.
Kruse
, in
Comprehensive Biophysics
, edited by
E.
Egelman
(
Academic Press
,
Oxford
,
2012
), Vol. 7, pp.
208
221
.
139.
P.
Recouvreux
,
T. R.
Sokolowski
,
A.
Grammoustianou
,
P. R.
ten Wolde
, and
M.
Dogterom
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
1811
(
2016
).
140.
P. A.
Lochhead
,
G.
Sibbet
,
N.
Morrice
, and
V.
Cleghon
,
Cell
121
,
925
(
2005
).
141.
P. A.
Lochhead
,
Sci. Signaling
2
,
pe4
(
2009
).
142.
V. V.
Saul
,
L.
de la Vega
,
M.
Milanovic
,
M.
Krüger
,
T.
Braun
,
K.
Fritz-Wolf
,
K.
Becker
, and
M. L.
Schmitz
,
J. Mol. Cell Biol.
5
,
27
(
2013
).
143.
T. E.
Saunders
,
K. Z.
Pan
,
A.
Angel
,
Y.
Guan
,
J. V.
Shah
,
M.
Howard
, and
F.
Chang
,
Dev. Cell
22
,
558
(
2012
).
144.
A.
Kivenson
and
M. F.
Hagan
, e-print arXiv:1208.5156 [q-bio.BM] (
2012
).
145.

In simulation data sets with sufficiently long sampled trajectories, the data recording time was increased to 60 s.

146.
L.
Dematté
, in
2010 Ninth International Workshop on Parallel and Distributed Methods in Verification, and Second International Workshop on High Performance Computational Systems Biology (PDMC-HIBI)
(
IEEE
,
2010
), pp.
67
77
.
147.
D. V.
Gladkov
,
S.
Alberts
,
R. M.
D’Souza
, and
S. S.
Andrews
, in
Proceedings of the 19th High Performance Computing Symposia
(
Society for Computer Simulation International, San Diego, CA
,
2011
), p.
151
.
148.
L.
Dematté
,
IEEE/ACM Trans. Comput. Biol. Bioinf.
9
,
655
(
2012
).
149.
A.
Coulier
and
A.
Hellander
, in
2018 IEEE 14th International Conference on e-Science (e-Science)
(
IEEE
,
2018
).
150.
R.
Erban
,
M. B.
Flegg
, and
G. A.
Papoian
,
Bull. Math. Biol.
76
,
799
(
2013
).
151.
B.
Franz
,
M.
Flegg
,
S.
Chapman
, and
R.
Erban
,
SIAM J. Appl. Math.
73
,
1224
(
2013
).
152.
M.
Flegg
,
S.
Chapman
,
L.
Zheng
, and
R.
Erban
,
SIAM J. Sci. Comput.
36
,
B561
(
2014
).
153.
M. B.
Flegg
,
S.
Hellander
, and
R.
Erban
,
J. Comput. Phys.
289
,
1
(
2015
).
154.
M.
Robinson
,
M.
Flegg
, and
R.
Erban
,
J. Chem. Phys.
140
,
124109
(
2014
).
155.
M.
Robinson
,
S. S.
Andrews
, and
R.
Erban
,
Bioinformatics
31
,
2406
(
2015
).
156.
S.
Hellander
,
A.
Hellander
, and
L.
Petzold
,
J. Chem. Phys.
147
,
234101
(
2017
).
157.
S. S.
Khokhlova
and
N.
Agmon
,
J. Chem. Phys.
137
,
184103
(
2012
).
158.
T.
Prüstel
and
M.
Meier-Schellersheim
,
J. Chem. Phys.
137
,
054104
(
2012
).
159.
T.
Prüstel
and
M.
Tachiya
,
J. Chem. Phys.
139
,
194103
(
2013
).
160.
T.
Prüstel
and
M.
Meier-Schellersheim
, e-print arXiv:1305.1706 [physics, q-bio] (
2013
).
161.
T.
Prüstel
and
M.
Meier-Schellersheim
,
J. Chem. Phys.
138
,
104112
(
2013
).
162.
T.
Prüstel
and
M.
Meier-Schellersheim
,
J. Chem. Phys.
140
,
114106
(
2014
).
163.
Z.
Bashardanesh
and
P.
Lötstedt
,
J. Comput. Phys.
357
,
78
(
2018
).
164.
165.
I.
Arnal
and
R. H.
Wade
,
Curr. Biol.
5
,
900
(
1995
).
166.
A.
Vijaykumar
,
P. G.
Bolhuis
, and
P. R.
ten Wolde
,
J. Chem. Phys.
143
,
214102
(
2015
).
167.
A.
Vijaykumar
,
T. E.
Ouldridge
,
P. R.
ten Wolde
, and
P. G.
Bolhuis
,
J. Chem. Phys.
146
,
114106
(
2017
).
168.
K.
Kaizu
and
K.
Takahashi
, personal communication (2018).

Supplementary Material

You do not currently have access to this content.