By a suitable choice of coordinates, the computational effort required for calculations of anharmonic vibrational spectra can be reduced significantly. By using suitable localized-mode coordinates obtained from an orthogonal transformation of the conventionally used normal-mode coordinates, anharmonic couplings between modes can be significantly reduced. However, such a transformation introduces harmonic couplings between the localized modes. To elucidate the role of these harmonic couplings, we consider the vibrational self-consistent field (VSCF)/vibrational configuration interaction (VCI) calculations for both few-mode model systems and for ethene as a molecular test case. We show that large harmonic couplings can result in significant errors in localized-mode L-VSCF/L-VCI calculations and study the convergence with respect to the size of the VCI excitation space. To further elucidate the errors introduced by harmonic couplings, we discuss the connection between L-VSCF/L-VCI and vibrational exciton models. With the help of our results, we propose an algorithm for the localization of normal modes in suitable subsets that are chosen to strictly limit the errors introduced by the harmonic couplings while still leading to maximally localized modes.

1.
N. C.
Polfer
,
J.
Oomens
,
S.
Suhai
, and
B.
Paizs
, “
Infrared spectroscopy and theoretical studies on gas-phase protonated leu-enkephalin and its fragments: Direct experimental evidence for the mobile proton
,”
J. Am. Chem. Soc.
129
,
5887
(
2007
).
2.
F.
Schinle
,
Ch. R.
Jacob
,
A. B.
Wolk
,
J.-F.
Greisch
,
M.
Vonderach
,
P.
Weis
,
O.
Hampe
,
M. A.
Johnson
, and
M. M.
Kappes
, “
Ion mobility spectrometry, infrared dissociation spectroscopy, and ab initio computations toward structural characterization of the deprotonated leucine-enkephalin peptide anion in the gas phase
,”
J. Phys. Chem. A
118
,
8453
(
2014
).
3.
A. Y.
Pereverzev
,
X.
Cheng
,
N. S.
Nagornova
,
D. L.
Reese
,
R. P.
Steele
, and
O. V.
Boyarkin
, “
Vibrational signatures of conformer-specific intramolecular interactions in protonated tryptophan
,”
J. Phys. Chem. A
120
,
5598
(
2016
).
4.
N. L.
Burke
,
A. F.
DeBlase
,
J. G.
Redwine
,
J. R.
Hopkins
,
S. A.
McLuckey
, and
T. S.
Zwier
, “
Gas-phase folding of a prototypical protonated pentapeptide: Spectroscopic evidence for formation of a charge-stabilized β-Hairpin
,”
J. Am. Chem. Soc.
138
,
2849
(
2016
).
5.
V.
Barone
,
M.
Biczysko
, and
C.
Puzzarini
, “
Quantum chemistry meets spectroscopy for astrochemistry: Increasing complexity toward prebiotic molecules
,”
Acc. Chem. Res.
48
,
1413
(
2015
).
6.
M.
Biczysko
,
J.
Bloino
, and
C.
Puzzarini
, “
Computational challenges in astrochemistry
,”
WIREs comput. Mol. Sci.
8
,
e1349
(
2018
).
7.
Ch. R.
Jacob
,
S.
Luber
, and
M.
Reiher
, “
Understanding the signatures of secondary-structure elements in proteins with Raman optical activity spectroscopy
,”
Chem. Eur. J.
15
,
13491
(
2009
).
8.
T.
Weymuth
,
M. P.
Haag
,
K.
Kiewisch
,
S.
Luber
,
S.
Schenk
,
Ch. R.
Jacob
,
C.
Herrmann
,
J.
Neugebauer
, and
M.
Reiher
, “
MoViPac: Vibrational spectroscopy with a robust meta-program for massively parallel standard and inverse calculations
,”
J. Comput. Chem.
33
,
2186
2198
(
2012
).
9.
S.
Luber
, “
Solvent effects in calculated vibrational Raman optical activity spectra of α-Helices
,”
J. Phys. Chem. A
117
,
2760
(
2013
).
10.
A. G.
Császár
,
C.
Fábri
,
T.
Szidarovszky
,
E.
Mátyus
,
T.
Furtenbacher
, and
G.
Czakó
, “
The fourth age of quantum chemistry: Molecules in motion
,”
Phys. Chem. Chem. Phys.
14
,
1085
(
2011
).
11.
J.
Bloino
,
A.
Baiardi
, and
M.
Biczysko
, “
Aiming at an accurate prediction of vibrational and electronic spectra for medium-to-large molecules: An overview
,”
Int. J. Quantum Chem.
116
,
1543
(
2016
).
12.
E. B.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
(
Dover Publications
,
New York
,
1980
).
13.
J.
Neugebauer
,
M.
Reiher
,
C.
Kind
, and
B. A.
Hess
, “
Quantum chemical calculation of vibrational spectra of large molecules—Raman and IR spectra for Buckminsterfullerene
,”
J. Comput. Chem.
23
,
895
(
2002
).
14.
J. O.
Jung
and
R. B.
Gerber
, “
Vibrational wave functions and spectroscopy of (H2O)n, n = 2, 3, 4, 5: Vibrational self-consistent field with correlation corrections
,”
J. Chem. Phys.
105
,
10332
(
1996
).
15.
S.
Carter
,
J. M.
Bowman
, and
N. C.
Handy
, “
Extensions and tests of ‘multimode’: A code to obtain accurate vibration/rotation energies of many-mode molecules
,”
Theor. Chem. Acc.
100
,
191
(
1998
).
16.
D. M.
Benoit
, “
Fast vibrational self-consistent field calculations through a reduced mode–mode coupling scheme
,”
J. Chem. Phys.
120
,
562
(
2003
).
17.
G.
Rauhut
, “
Efficient calculation of potential energy surfaces for the generation of vibrational wave functions
,”
J. Chem. Phys.
121
,
9313
(
2004
).
18.
T.
Hrenar
,
H.-J.
Werner
, and
G.
Rauhut
, “
Towards accurate ab initio calculations on the vibrational modes of the alkaline earth metal hydrides
,”
Phys. Chem. Chem. Phys.
7
,
3123
(
2005
).
19.
C.
Puzzarini
,
M.
Biczysko
, and
V.
Barone
, “
Accurate harmonic/anharmonic vibrational frequencies for open-shell systems: Performances of the B3LYP/N07D model for semirigid free radicals benchmarked by CCSD(T) computations
,”
J. Chem. Theory Comput.
6
,
828
(
2010
).
20.
D.
Oschetzki
and
G.
Rauhut
, “
Pushing the limits in accurate vibrational structure calculations: Anharmonic frequencies of lithium fluoride clusters (LiF)n, n = 2–10
,”
Phys. Chem. Chem. Phys.
16
,
16426
(
2014
).
21.
C.
König
and
O.
Christiansen
, “
Linear-scaling generation of potential energy surfaces using a double incremental expansion
,”
J. Chem. Phys.
145
,
064105
(
2016
).
22.
D.
Madsen
,
O.
Christiansen
, and
C.
König
, “
Anharmonic vibrational spectra from double incremental potential energy and dipole surfaces
,”
Phys. Chem. Chem. Phys.
20
,
3445
(
2018
).
23.
J. K. G.
Watson
, “
Simplification of the molecular vibration-rotation Hamiltonian
,”
Mol. Phys.
15
,
479
(
1968
).
24.
N. J.
Wright
and
R. B.
Gerber
, “
Direct calculation of anharmonic vibrational states of polyatomic molecules using potential energy surfaces calculated from density functional theory
,”
J. Chem. Phys.
112
,
2598
(
2000
).
25.
O.
Christiansen
, “
Vibrational structure theory: New vibrational wave function methods for calculation of anharmonic vibrational energies and vibrational contributions to molecular properties
,”
Phys. Chem. Chem. Phys.
9
,
2942
(
2007
).
26.
O.
Christiansen
, “
Selected new developments in vibrational structure theory: Potential construction and vibrational wave function calculations
,”
Phys. Chem. Chem. Phys.
14
,
6672
(
2012
).
27.
G.
Rauhut
, “
Configuration selection as a route towards efficient vibrational configuration interaction calculations
,”
J. Chem. Phys.
127
,
184109
(
2007
).
28.
Y.
Scribano
and
D. M.
Benoit
, “
Calculation of vibrational frequencies through a variational reduced-coupling approach
,”
J. Chem. Phys.
127
,
164118
(
2007
).
29.
M.
Neff
and
G.
Rauhut
, “
Toward large scale vibrational configuration interaction calculations
,”
J. Chem. Phys.
131
,
124129
(
2009
).
30.
C.
König
and
O.
Christiansen
, “
Automatic determination of important mode–mode correlations in many-mode vibrational wave functions
,”
J. Chem. Phys.
142
,
144115
(
2015
).
31.
P.
Seidler
and
O.
Christiansen
, “
Vibrational excitation energies from vibrational coupled cluster response theory
,”
J. Chem. Phys.
126
,
204101
(
2007
).
32.
P.
Seidler
,
M.
Sparta
, and
O.
Christiansen
, “
Vibrational coupled cluster response theory: A general implementation
,”
J. Chem. Phys.
134
,
054119
(
2011
).
33.
J. A.
Faucheaux
and
S.
Hirata
, “
Higher-order diagrammatic vibrational coupled-cluster theory
,”
J. Chem. Phys.
143
,
134105
(
2015
).
34.
W.
Mizukami
and
D. P.
Tew
, “
A second-order multi-reference perturbation method for molecular vibrations
,”
J. Chem. Phys.
139
,
194108
(
2013
).
35.
F.
Pfeiffer
and
G.
Rauhut
, “
Multi-reference vibration correlation methods
,”
J. Chem. Phys.
140
,
064110
(
2014
).
36.
A.
Baiardi
,
C. J.
Stein
,
V.
Barone
, and
M.
Reiher
, “
Vibrational density matrix renormalization group
,”
J. Chem. Theory Comput.
13
,
3764
(
2017
).
37.
A. G.
Császár
and
N. C.
Handy
, “
Exact quantum mechanical vibrational kinetic energy operator of sequentially bonded molecules in valence internal coordinates
,”
J. Chem. Phys.
102
,
3962
(
1995
).
38.
S. N.
Yurchenko
,
W.
Thiel
, and
P.
Jensen
, “
Theoretical ROVibrational energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules
,”
J. Mol. Spectrosc.
245
,
126
(
2007
).
39.
M.
Bounouar
and
C.
Scheurer
, “
The impact of approximate VSCF schemes and curvilinear coordinates on the anharmonic vibrational frequencies of formamide and thioformamide
,”
Chem. Phys.
347
,
194
(
2008
).
40.
Y.
Scribano
,
D. M.
Lauvergnat
, and
D. M.
Benoit
, “
Fast vibrational configuration interaction using generalized curvilinear coordinates and self-consistent basis
,”
J. Chem. Phys.
133
,
094103
(
2010
).
41.
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
, “
Accurate simulation of resonance-Raman spectra of flexible molecules: An internal coordinates approach
,”
J. Chem. Theory Comput.
11
,
3267
(
2015
).
42.
I. W.
Bulik
,
M. J.
Frisch
, and
P. H.
Vaccaro
, “
Vibrational self-consistent field theory using optimized curvilinear coordinates
,”
J. Chem. Phys.
147
,
044110
(
2017
).
43.
T. C.
Thompson
and
D. G.
Truhlar
, “
Optimization of vibrational coordinates, with an application to the water molecule
,”
J. Chem. Phys.
77
,
3031
(
1982
).
44.
K.
Yagi
,
M.
Keçeli
, and
S.
Hirata
, “
Optimized coordinates for anharmonic vibrational structure theories
,”
J. Chem. Phys.
137
,
204118
(
2012
).
45.
B.
Thomsen
,
K.
Yagi
, and
O.
Christiansen
, “
Optimized coordinates in vibrational coupled cluster calculations
,”
J. Chem. Phys.
140
,
154102
(
2014
).
46.
K.
Yagi
and
H.
Otaki
, “
Vibrational quasi-degenerate perturbation theory with optimized coordinates: Applications to ethylene and trans-1,3-butadiene
,”
J. Chem. Phys.
140
,
084113
(
2014
).
47.
P. M.
Zimmerman
and
P.
Smereka
, “
Optimizing vibrational coordinates to modulate intermode coupling
,”
J. Chem. Theory Comput.
12
,
1883
(
2016
).
48.
Ch. R.
Jacob
and
M.
Reiher
, “
Localizing normal modes in large molecules
,”
J. Chem. Phys.
130
,
084106
(
2009
).
49.
Ch. R.
Jacob
,
S.
Luber
, and
M.
Reiher
, “
Analysis of secondary structure effects on the IR and Raman spectra of polypeptides in terms of localized vibrations
,”
J. Phys. Chem. B
113
,
6558
(
2009
).
50.
P. T.
Panek
and
Ch. R.
Jacob
, “
On the benefits of localized modes in anharmonic vibrational calculations for small molecules
,”
J. Chem. Phys.
144
,
164111
(
2016
).
51.
P. T.
Panek
and
Ch. R.
Jacob
, “
Efficient calculation of anharmonic vibrational spectra of large molecules with localized modes
,”
ChemPhysChem
15
,
3365
(
2014
).
52.
P. T.
Panek
and
Ch. R.
Jacob
, “
Anharmonic theoretical vibrational spectroscopy of polypeptides
,”
J. Phys. Chem. Lett.
7
,
3084
(
2016
).
53.
X.
Cheng
and
R. P.
Steele
, “
Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates
,”
J. Chem. Phys.
141
,
104105
(
2014
).
54.
M. W. D.
Hanson-Heine
, “
Examining the impact of harmonic correlation on vibrational frequencies calculated in localized coordinates
,”
J. Chem. Phys.
143
,
164104
(
2015
).
55.
E. L.
Klinting
,
C.
König
, and
O.
Christiansen
, “
Hybrid optimized and localized vibrational coordinates
,”
J. Phys. Chem. A
119
,
11007
(
2015
).
56.
X.
Cheng
,
J. J.
Talbot
, and
R. P.
Steele
, “
Tuning vibrational mode localization with frequency windowing
,”
J. Chem. Phys.
145
,
124112
(
2016
).
57.
A.
Molina
,
P.
Smereka
, and
P. M.
Zimmerman
, “
Exploring the relationship between vibrational mode locality and coupling using constrained optimization
,”
J. Chem. Phys.
144
,
124111
(
2016
).
58.
Ch. R.
Jacob
, “
Theoretical study of the Raman optical activity spectra of 310-helical polypeptides
,”
ChemPhysChem
12
,
3291
(
2011
).
59.
M. W. D.
Hanson-Heine
, “
Intermediate vibrational coordinate localization with harmonic coupling constraints
,”
J. Chem. Phys.
144
,
204116
(
2016
).
60.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1999
).
61.
M.
Cho
, “
Coherent two-dimensional optical spectroscopy
,”
Chem. Rev.
108
,
1331
(
2008
).
62.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
, 1st ed. (
Cambridge University Press
,
Cambridge
,
2011
).
63.
A. V.
Cunha
,
A. S.
Bondarenko
, and
T. L. C.
Jansen
, “
Assessing spectral simulation protocols for the amide I band of proteins
,”
J. Chem. Theory Comput.
12
,
3982
(
2016
).
64.
R. D.
Gorbunov
,
D. S.
Kosov
, and
G.
Stock
, “
Ab initio-based exciton model of amide I vibrations in peptides: Definition, conformational dependence, and transferability
,”
J. Chem. Phys.
122
,
224904
(
2005
).
65.
T. l. C.
Jansen
,
A. G.
Dijkstra
,
T. M.
Watson
,
J. D.
Hirst
, and
J.
Knoester
, “
Modeling the amide I bands of small peptides
,”
J. Chem. Phys.
125
,
044312
(
2006
).
66.
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
, “
Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy
,”
J. Phys. Chem. B
102
,
6123
(
1998
).
67.
F. S.
Husseini
,
D.
Robinson
,
N. T.
Hunt
,
A. W.
Parker
, and
J. D.
Hirst
, “
Computing infrared spectra of proteins using the exciton model
,”
J. Comput. Chem.
38
,
1362
(
2016
).
68.
F.
Pfeiffer
,
G.
Rauhut
,
D.
Feller
, and
K. A.
Peterson
, “
Anharmonic zero point vibrational energies: Tipping the scales in accurate thermochemistry calculations?
,”
J. Chem. Phys.
138
,
044311
(
2013
).
69.
J. M. L.
Martin
,
T. J.
Lee
,
P. R.
Taylor
, and
J.-P.
François
, “
The anharmonic force field of ethylene, C2H4, by means of accurate ab initio calculations
,”
J. Chem. Phys.
103
,
2589
(
1995
).
70.
V.
Liégeois
and
B.
Champagne
, “
Implementation in the Pyvib2 program of the localized mode method and application to a helicene
,”
Theor. Chem. Acc.
131
,
1284
(
2012
).
71.
P. T.
Panek
,
A. A.
Hoeske
, and
Ch.
Jacob
, “
On the choice of coordinates in anharmonic theoretical vibrational spectroscopy
,” preprint ChemRxiv: 7295534 (
2018
), supplementary material.
72.
Ch. R.
Jacob
and
P. T.
Panek
(
2018
). “Vibrations—A python code for anharmonic teoretical vibrational spectroscopy,” Zenodo, V. 0.9 .
73.
Ch. R.
Jacob
(
2018
). “LocVib—Python tools for localizing normal modes,” Zenodo, V 1.1 .
You do not currently have access to this content.