Markov State Models (MSMs) describe the rates and routes in conformational dynamics of biomolecules. Computational estimation of MSMs can be expensive because molecular simulations are slow to find and sample the rare transient events. We describe here an efficient approximate way to determine MSM rate matrices by combining maximum caliber (maximizing path entropies) with optimal transport theory (minimizing some path cost function, as when routing trucks on transportation networks) to patch together transient dynamical information from multiple non-equilibrium simulations. We give toy examples.

1.
J. D.
Chodera
and
F.
Noé
,
Curr. Opin. Struct. Biol.
25
,
135
(
2014
).
2.
B. E.
Husic
and
V. S.
Pande
,
J. Am. Chem. Soc.
140
,
2386
(
2018
).
3.
R. C.
Bernardi
,
M. C.
Melo
, and
K.
Schulten
,
Biochim. Biophys. Acta (BBA) - Gen. Subj.
1850
,
872
(
2015
).
4.
P. D.
Dixit
 et al.,
J. Chem. Phys.
148
,
010901
(
2018
).
5.
P. D.
Dixit
and
K. A.
Dill
,
J. Chem. Theory Comput.
10
,
3002
(
2014
).
6.
P. D.
Dixit
,
Phys. Rev. E
92
,
042149
(
2015
).
7.
P. D.
Dixit
,
J. Chem. Phys.
148
,
091101
(
2018
).
8.
P. D.
Dixit
,
A.
Jain
,
G.
Stock
, and
K. A.
Dill
,
J. Chem. Theory Comput.
11
,
5464
(
2015
).
9.
P. D.
Dixit
and
K.
Dill
,
J. Chem. Theory Comput.
14
,
1111
(
2018
).
10.
P.
Tiwary
and
B.
Berne
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
2839
(
2016
).
11.
P.
Tiwary
and
B.
Berne
,
J. Chem. Phys.
147
,
152701
(
2017
).
12.
Z.
Smith
,
D.
Pramanik
,
S.-T.
Tsai
, and
P.
Tiwary
,
J. Chem. Phys.
149
,
234105
(
2018
).
13.
D.
Meral
,
D.
Provasi
, and
M.
Filizola
,
J. Chem. Phys.
149
,
224101
(
2018
).
14.
L.
Hovan
,
F.
Comitani
, and
F. L.
Gervasio
,
J. Chem. Theory Comput.
15
,
25
(
2018
).
15.
H.
Wan
,
G.
Zhou
, and
V. A.
Voelz
,
J. Chem. Theory Comput.
12
,
5768
(
2016
).
16.
G.
Zhou
,
G. A.
Pantelopulos
,
S.
Mukherjee
, and
V. A.
Voelz
,
Biophys. J.
113
,
785
(
2017
).
17.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
(
2009
).
18.
F.
Nüske
 et al.,
J. Chem. Phys.
146
,
094104
(
2017
).
19.
H.
Wu
 et al.,
J. Chem. Phys.
146
,
154104
(
2017
).
20.
C.
Villani
,
Optimal Transport: Old and New
(
Springer Science & Business Media
,
2008
), Vol. 338.
21.
M. A.
Schmitz
 et al.,
SIAM J. Imaging Sci.
11
,
643
(
2018
).
22.
G.
Schiebinger
 et al., preprint bioRxiv:191056 (
2017
).
23.
A.
Galichon
,
Optimal Transport Methods in Economics
(
Princeton University Press
,
2016
).
24.
G.
Peyré
and
M.
Cuturi
, “
Computational Optimal Transport
,” arXiv:1803.00567 (
2018
).
25.
M.
Cuturi
, “
Sinkhorn distances: Lightspeed computation of optimal transport
,” in
Advances in Neural Information Processing Systems
(
2013
), pp.
2292
2300
.
26.
P.
Dixit
,
E.
Lyashenko
,
M.
Niepel
, and
D.
Vitkup
, preprint bioRxiv:137513 (
2017
).
27.
G.
Tkacik
,
E.
Schneidman
,
I.
Berry
,
J.
Michael
, and
W.
Bialek
, preprint arXiv:q-bio/0611072 (
2006
).
28.
T.
Broderick
and
M.
Dud
, e-print arXiv:0712.2437v2 (
2007
).
29.
A.
Cesari
,
S.
Reißer
, and
G.
Bussi
,
Computation
6
,
15
(
2018
).
30.
K. A.
Dill
,
S. B.
Ozkan
,
M. S.
Shell
, and
T. R.
Weikl
,
Annu. Rev. Biophys.
37
,
289
(
2008
).
You do not currently have access to this content.