Molecular dynamics simulations allow us to study the structure and dynamics of single biomolecules in microscopic detail. However, many processes occur on time scales beyond the reach of fully atomistic simulations and require coarse-grained multiscale models. While systematic approaches to construct such models have become available, these typically rely on microscopic dynamics that obey detailed balance. In vivo, however, biomolecules are constantly driven away from equilibrium in order to perform specific functions and thus break detailed balance. Here we introduce a method to construct Markov state models for systems that are driven through periodically changing one (or several) external parameter. We illustrate the method for alanine dipeptide, a widely used benchmark molecule for computational methods, exposed to a time-dependent electric field.

1.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
2002
).
2.
G.
Bowman
and
V.
Pande
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
10890
(
2010
).
3.
V.
Voelz
,
G.
Bowman
,
K.
Beauchamp
, and
V.
Pande
,
J. Am. Chem. Soc.
132
,
1526
(
2010
).
4.
N.
Plattner
and
F.
Noé
,
Nat. Commun.
6
,
7653
(
2015
).
5.
J. F.
Rudzinski
,
K.
Kremer
, and
T.
Bereau
,
J. Chem. Phys.
144
,
051102
(
2016
).
6.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
7.
F.
Pellegrini
,
F. P.
Landes
,
A.
Laio
,
S.
Prestipino
, and
E.
Tosatti
,
Phys. Rev. E
94
,
053001
(
2016
).
8.
M.
Teruzzi
,
F.
Pellegrini
,
A.
Laio
, and
E.
Tosatti
,
J. Chem. Phys.
147
,
152721
(
2017
).
9.
H.
Wang
and
C.
Schütte
,
J. Chem. Theory Comput.
11
,
1819
(
2015
).
10.
F.
Knoch
and
T.
Speck
,
Phys. Rev. E
95
,
012503
(
2017
).
11.
A. B.
Kolomeisky
and
M. E.
Fisher
,
Annu. Rev. Phys. Chem.
58
,
675
(
2007
).
12.
H.
Noji
,
R.
Yasuda
,
M.
Yoshida
, and
K.
Kinosita
,
Nature
386
,
299
(
1997
).
13.
S.
Liepelt
and
R.
Lipowsky
,
Phys. Rev. Lett.
98
,
258102
(
2007
).
14.
E.
Zimmermann
and
U.
Seifert
,
New J. Phys.
14
,
103023
(
2012
).
15.
16.
K.
Brandner
,
K.
Saito
, and
U.
Seifert
,
Phys. Rev. X
5
,
031019
(
2015
).
17.
S.
Ray
and
A. C.
Barato
,
Phys. Rev. E
96
,
052120
(
2017
).
18.
O.
Raz
,
Y.
Subaş
ı, and
C.
Jarzynski
,
Phys. Rev. X
6
,
021022
(
2016
).
19.
G. M.
Rotskoff
,
Phys. Rev. E
95
,
030101
(
2017
).
20.
F.
Knoch
,
K.
Schfer
,
G.
Diezemann
, and
T.
Speck
,
J. Chem. Phys.
148
,
044109
(
2018
).
21.
F.
Knoch
and
T.
Speck
,
New J. Phys.
17
,
115004
(
2015
).
22.
S.
Krimm
and
J.
Bandekar
,
Adv. Protein Chem.
38
,
181
(
1986
).
23.
R. K. P.
Zia
and
B.
Schmittmann
,
J. Stat. Mech.: Theor. Exp.
2007
,
P07012
.
24.
P. A.
Kuchment
,
Floquet Theory for Partial Differential Equations
(
Springer
,
2013
).
25.
C.
Schtte
,
F.
Noé
,
J.
Lu
,
M.
Sarich
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
134
,
204105
(
2011
).
26.
M.
Sarich
and
C.
Schütte
, “
Utilizing hitting times for finding metastable sets in non-reversible Markov chains
,” Technical Report No. 14-32 (
ZIB
,
Berlin
,
2014
).
27.
R.
Israel
,
J.
Rosenthal
, and
J.
Wei
,
Math. Finance
11
,
245
(
2001
).
28.
A.
Puglisi
,
S.
Pigolotti
,
L.
Rondoni
, and
A.
Vulpiani
,
J. Stat. Mech.
2010
,
P05015
.
29.
S. L.
Kalpazidou
,
Cycle Representations of Markov Processes
(
Springer Science & Business Media
,
2007
), Vol. 28.
30.
B.
Altaner
,
S.
Grosskinsky
,
S.
Herminghaus
,
L.
Katthän
,
M.
Timme
, and
J.
Vollmer
,
Phys. Rev. E
85
,
041133
(
2012
).
31.
J.
Esque
and
M.
Cecchini
,
J. Phys. Chem. B
119
,
5194
(
2015
).
32.
J.
Chodera
,
N.
Singhal
,
V.
Pande
,
K. A.
Dill
, and
W.
Swope
,
J. Chem. Phys.
126
,
155101
(
2007
).
33.
C.
de Oliveira
,
D.
Hamelberg
, and
J.
McCammon
,
J. Chem. Phys.
127
,
175105
(
2007
).
34.
C.
Velez-Vega
,
E.
Borrero
, and
F.
Escobedo
,
J. Chem. Phys.
130
,
225101
(
2009
).
35.
M.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1
,
19
(
2015
).
36.
A.
MacKerell
,
N.
Banavali
, and
N.
Foloppe
,
Biopolymers
56
,
257
(
2000
).
37.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
38.
B.
Hess
,
H.
Bekker
,
H.
Berendsen
, and
J.
Fraaije
,
J. Comput. Chem.
18
,
1463
(
1997
).
39.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
40.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
41.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
,
J. Chem. Phys.
139
,
015102
(
2013
).
42.
R.
McGibbon
and
V.
Pande
,
J. Chem. Phys.
143
,
034109
(
2015
).
43.
K.
Beauchamp
,
G.
Bowman
,
T.
Lane
,
L.
Maibaum
,
I.
Haque
, and
V.
Pande
,
J. Chem. Theory Comput.
7
,
3412
(
2011
).
44.

We choose the electric field to be positive because the (ϕ, ψ) configuration space would otherwise be degenerated with respect to positive/negative field directions, making it impossible to compare both approaches within the (ϕ, ψ) representation.

47.
A.
Mardt
,
L.
Pasquali
,
H.
Wu
, and
F.
Noé
,
Nat. Commun.
9
,
5
(
2018
).
48.
M.
Newman
,
Networks: An Introduction
(
Oxford University Press
,
2010
).
49.
S.
Röblitz
and
M.
Weber
,
Adv. Data Anal. Classif.
7
,
147
(
2013
).
You do not currently have access to this content.