Classical molecular dynamics simulations at the interfaces of two (meth)acrylate polymers, poly(2-methoxyethylacrylate) (PMEA) and poly(methyl methacrylate) (PMMA), upon contact with water are performed to elucidate interfacial molecular structures from the interface-specific nonlinear spectroscopic point of view. PMEA has methoxy oxygen in the side chain, while PMMA does not have it, and its impacts on the interfacial structure are particularly focused on. The force fields of PMEA and PMMA used in the classical simulation are modeled so as to reproduce the radial distribution functions and the vibrational density of states calculated by ab initio molecular dynamics simulations, where a stronger hydrogen-bonding interaction between water and methoxy oxygen of PMEA than the conventional molecular modeling predicts is found. The imaginary part of the second order nonlinear susceptibility is theoretically calculated for these two interfaces, showing a definite difference between them. The origin of the spectral difference is discussed on the basis of the decomposition analysis of the spectra and the interfacial molecular structures.

1.
M. A.
Bag
and
L. M.
Valenzuela
, “
Impact of the hydration states of polymers on their hemocompatibility for medical applications: A review
,”
Int. J. Mol. Sci.
18
,
1422
(
2017
).
2.
M.
Tanaka
,
T.
Hayashi
, and
S.
Morita
, “
The roles of water molecules at the biointerface of medical polymers
,”
Polym. J.
45
,
701
(
2013
).
3.
Water in Polymer
, ACS Symposium Series, Volume 127, edited by
S.
Rowland
(
American Chemical Society
,
Washington, D.C.
,
1980
).
4.
E.
Vogler
, “
Structure and reactivity of water at biomaterial surfaces
,”
Adv. Colloid Interface Sci.
74
,
69
(
1998
).
5.
M.
Tanaka
,
T.
Motomura
,
M.
Kawada
,
T.
Anzai
,
Y.
Kasori
,
T.
Shiroya
,
K.
Shimura
,
M.
Onishi
, and
A.
Mochizuki
, “
Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)—Relationship between protein adsorption and platelet adhesion on pmea surface
,”
Biomaterials
21
,
1471
(
2000
).
6.
H.
Hatakeyama
and
T.
Hatakeyama
, “
Interaction between water and hydrophilic polymers
,”
Thermochim. Acta
308
,
3
(
1998
).
7.
M.
Tanaka
,
T.
Motomura
,
N.
Ishii
,
K.
Shimura
,
M.
Onishi
,
A.
Mochizuki
, and
T.
Hatakeyama
, “
Cold crystallization of water in hydrated poly(2-methoxyethyl acrylate) (PMEA)
,”
Polym. Int.
49
,
1709
(
2000
).
8.
A.
Kishi
,
M.
Tanaka
, and
A.
Mochizuki
, “
Comparative study on water structures in polyhema and polymea by XRD-DSC simultaneous measurement
,”
J. Appl. Polym. Sci.
111
,
476
(
2009
).
9.
H.
Kitano
,
K.
Ichikawa
,
M.
Fukuda
,
A.
Mochizuki
, and
M.
Tanaka
, “
The structure of water sorbed to polymethoxyethylacrylate film as examined by FT-IR spectroscopy
,”
J. Colloid Interface Sci.
242
,
133
(
2001
).
10.
S.
Morita
,
M.
Tanaka
, and
Y.
Ozaki
, “
Time-resolved in situ ATR-IR observations of the process of sorption of water into a poly(2-methoxyethyl acrylate) film
,”
Langmuir
23
,
3750
(
2007
).
11.
Y.
Maeda
,
M.
lde
, and
H.
Kitano
, “
Vibrational spectroscopic study on the structure of water in polymer systems
,”
J. Mol. Liq.
80
,
149
(
1999
).
12.
M.
Tanaka
and
A.
Mochizuki
, “
Effect of water structure on blood compatibility—thermal analysis of water in poly(meth)acrylate
,”
J. Biomed. Mater. Res., Part A
68A
,
684
(
2004
).
13.
X.
Lu
,
C.
Zhang
,
N.
Ulrich
,
M.
Xiao
,
Y.
Ma
, and
Z.
Chen
, “
Studying polymer surfaces and interfaces with sum frequency generation vibrational spectroscopy
,”
Anal. Chem.
89
,
466
(
2017
).
14.
C.
Zhang
, “
Sum frequency generation vibrational spectroscopy for characterization of buried polymer interfaces
,”
Appl. Spectrosc.
71
,
1717
(
2017
).
15.
Y. R.
Shen
,
Fundamentals of Sum-Frequency Spectroscopy
(
Cambridge University Press
,
Cambridge
,
2016
).
16.
J.
Wang
,
S.
Woodcock
,
S.
Buck
,
C.
Chen
, and
Z.
Chen
, “
Different surface-restructuring behaviors of poly(methacrylate)s detected by SFG in water
,”
J. Am. Chem. Soc.
123
,
9470
(
2001
).
17.
Y.
Hong
,
H.
Zhou
,
W.
Qian
,
B.
Zuo
, and
X.
Wang
, “
Impact of the α-methyl group (α-CH3) on the aggregation states and interfacial isotherms of poly(acrylates) monolayers at the water surface
,”
J. Phys. Chem. C
121
,
19816
(
2017
).
18.
J.
Wang
,
Z.
Paszti
,
M.
Even
, and
Z.
Chen
, “
Measuring polymer surface ordering differences in air and water by sum frequency generation vibrational spectroscopy
,”
J. Am. Chem. Soc.
124
,
7016
(
2002
).
19.
C.
Chen
,
M.
Clarke
,
J.
Wang
, and
Z.
Chen
, “
Comparison of surface structures of poly(ethyl methacrylate) and poly(ethyl acrylate) in different chemical environments
,”
Phys. Chem. Chem. Phys.
7
,
2357
(
2005
).
20.
M.
Clarke
,
C.
Chen
,
J.
Wang
, and
Z.
Chen
, “
Molecular level structures of poly(n-alkyl methacrylate)s with different side chain lengths at the polymer/air and polymer/water interfaces
,”
Langmuir
22
,
8800
(
2006
).
21.
A.
Horinouchi
and
K.
Tanaka
, “
An effect of stereoregularity on the structure of poly(methyl methacrylate) at air and water interfaces
,”
RSC Adv.
3
,
9446
(
2013
).
22.
T.
Hirata
,
H.
Matsuno
,
D.
Kawaguchi
,
T.
Hirai
,
N.
Yamada
,
M.
Tanaka
, and
K.
Tanaka
, “
Effect of local chain dynamics on a bioinert interface
,”
Langmuir
31
,
3661
(
2015
).
23.
Y.
Oda
,
A.
Horinouchi
,
D.
Kawaguchi
,
H.
Matsuno
,
S.
Kanaoka
,
S.
Aoshima
, and
K.
Tanaka
, “
Effect of side-chain carbonyl groups on the interface of vinyl polymers with water
,”
Langmuir
30
,
1215
(
2014
).
24.
T.
Hirata
,
H.
Matsuno
,
D.
Kawaguchi
,
N.
Yamada
,
M.
Tanaka
, and
K.
Tanaka
, “
Effect of interfacial structure on bioinert properties of poly(2-methoxyethyl acrylate)/poly(methyl methacrylate) blend films in water
,”
Phys. Chem. Chem. Phys.
17
,
17399
(
2015
).
25.
G.
Li
,
S.
Ye
,
S.
Morita
,
T.
Nishida
, and
M.
Osawa
, “
Hydrogen bonding on the surface of poly(2-methoxyethyl acrylate)
,”
J. Am. Chem. Soc.
126
,
12198
(
2004
).
26.
Y.
Tateishi
,
N.
Kai
,
H.
Noguchi
,
K.
Uosaki
,
T.
Nagamura
, and
K.
Tanaka
, “
Local conformation of poly(methyl methacrylate) at nitrogen and water interfaces
,”
Polym. Chem.
1
,
303
(
2010
).
27.
J.
Hankett
,
Y.
Liu
,
X.
Zhang
,
C.
Zhang
, and
Z.
Chen
, “
Molecular level studies of polymer behaviors at the water interface using sum frequency generation vibrational spectroscopy
,”
J. Polym. Sci., Part B: Polym. Phys.
51
,
311
(
2013
).
28.
X.
Li
,
B.
Li
,
X.
Zhang
,
C.
Li
,
Z.
Guo
,
D.
Zhou
, and
X.
Lu
, “
Detecting surface hydration of poly(2-hydroxyethyl methacrylate) in solution in situ
,”
Macromolecules
49
,
3116
(
2016
).
29.
Y. R.
Shen
, “
Phase-sensitive sum-frequency spectroscopy
,”
Annu. Rev. Phys. Chem.
64
,
129
(
2013
).
30.
S.
Nihonyanagi
,
J. A.
Mondal
,
S.
Yamaguchi
, and
T.
Tahara
, “
Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation
,”
Annu. Rev. Phys. Chem.
64
,
579
(
2013
).
31.
Y. R.
Shen
and
V.
Ostroverkhov
, “
Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces
,”
Chem. Rev.
106
,
1140
(
2006
).
32.
N.
Ji
,
V.
Ostroverkhov
,
C. S.
Tian
, and
Y. R.
Shen
, “
New information on water interfacial structure revealed by phase-sensitive surface spectroscopy
,”
Phys. Rev. Lett.
100
,
096102
(
2008
).
33.
X.
Chen
,
W.
Hua
,
Z.
Huang
, and
H. C.
Allen
, “
Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy
,”
J. Am. Chem. Soc.
132
,
11336
(
2010
).
34.
S.
Nihonyanagi
,
R.
Kusaka
,
K.
Inoue
,
A.
Adhikari
,
S.
Yamaguchi
, and
T.
Tahara
, “
Accurate determination of complex χ(2) spectrum of the air/water interface
,”
J. Chem. Phys.
143
,
124707
(
2015
).
35.
S.
Yamaguchi
, “
Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface
,”
J. Chem. Phys.
143
,
034202
(
2015
).
36.
S.
Sun
,
R.
Liang
,
X.
Xu
,
H.
Zhu
,
Y. R.
Shen
, and
C.
Tian
, “
Phase reference in phase-sensitive sum-frequency vibrational spectroscopy
,”
J. Chem. Phys.
144
,
244711
(
2016
).
37.
Y.
Wen
,
S.
Zha
,
X.
Liu
,
S.
Yang
,
P.
Guo
,
G.
Shi
,
H.
Fang
,
Y.
Shen
, and
C.
Tian
, “
Unveiling microscopic structures of charged water interfaces by surface-specific vibrational spectroscopy
,”
Phys. Rev. Lett.
116
,
016101
(
2016
).
38.
A.
Mafi
,
D.
Hu
, and
K.
Chou
, “
Interactions of sulfobetaine zwitterionic surfactants with water on water surface
,”
Langmuir
32
,
10905
(
2016
).
39.
N.
Takeshita
,
M.
Okuno
, and
T.
Ishibashi
, “
Molecular conformation of DPPC phospholipid Langmuir and Langmuir–Blodgett monolayers studied by heterodyne-detected vibrational sum frequency generation spectroscopy
,”
Phys. Chem. Chem. Phys.
19
,
2060
(
2017
).
40.
W.
Sung
,
Z.
Avazbaeva
, and
D.
Kim
, “
Salt promotes protonation of amine groups at air/water interface.
,”
J. Phys. Chem. Lett.
8
,
3601
(
2017
).
41.
W.
Smit
,
J.
Versluis
,
E.
Backus
,
M.
Bonn
, and
H.
Bakker
, “
Reduced near-resonant vibrational coupling at the surfaces of liquid water and ice
,”
J. Phys. Chem. Lett.
9
,
1290
(
2018
).
42.
A.
Myalitsin
,
S.
Nihonyanagi
,
S.
Yamaguchi
,
J.
Yanagisawa
,
T.
Aoki
, and
T.
Tahara
, “
Structure of water at buried polymer/water interfaces revealed by heterodyne-detected vibrational sum frequency generation spectroscopy
,” in
9th International Conference of Advanced Vibrational Spectroscopy (ICAVS9) 3-NLO-55
,
2017
.
43.
A.
Myalitsin
,
S.
Ghosh
,
S.
Nihonyanagi
,
S.
Yamaguchi
,
J.
Yanagisawa
,
T.
Aoki
, and
T.
Tahara
, personal communication (2017).
44.
W.
Lee
,
J.
Chang
, and
S.
Ju
, “
Hydrogen-bond structure at the interfaces between water/poly(methyl methacrylate), water/poly(methacrylic acid), and water/poly(2-aminoethylmethacrylamide)
,”
Langmuir
26
,
12640
(
2010
).
45.
S.
Bellani
,
M.
Porro
,
C.
Caddeo
,
M.
Saba
,
P.
Miranda
, and
A.
Mattoni
, “
The study of polythiophene/water interfaces by sum-frequency generation spectroscopy and molecular dynamics simulations
,”
J. Mater. Chem. B
3
,
6429
(
2015
).
46.
A.
Morita
,
Theory of Sum Frequency Generation Spectroscopy
(
Springer
,
2018
).
47.
T.
Ishiyama
,
T.
Imamura
, and
A.
Morita
, “
Theoretical studies of structures and vibrational sum frequency generation spectra at aqueous interfaces
,”
Chem. Rev.
114
,
8447
(
2014
).
48.
T.
Ishiyama
and
A.
Morita
, “
Computational analysis of vibrational sum frequency generation spectroscopy
,”
Annu. Rev. Phys. Chem.
68
,
355
(
2017
).
49.
T.
Ishiyama
,
D.
Terada
, and
A.
Morita
, “
Hydrogen-bonding structure at zwitterionic lipid/water interface
,”
J. Phys. Chem. Lett.
7
,
216
(
2016
).
50.
T.
Ishiyama
,
S.
Shirai
,
T.
Okumura
, and
A.
Morita
, “
Molecular dynamics study of structure and vibrational spectra at zwitterionoic lipid/aqueous KCl, NaCl, and CaCl2 solution interfaces
,”
J. Chem. Phys.
148
,
222801
(
2018
).
51.
H.
Zhu
,
K.
Jha
,
R.
Bhatta
,
M.
Tsige
, and
A.
Dhinojwala
, “
Molecular structure of poly(methyl methacrylate) surface. I. Combination of interface-sensitive infrared-visible sum frequency generation, molecular dynamics simulations, and ab initio calculations
,”
Langmuir
30
,
11609
(
2014
).
52.
K.
Jha
,
H.
Zhu
,
A.
Dhinojwala
, and
M.
Tsige
, “
Molecular structure of poly(methyl methacrylate) surface. II. Effect of stereoregularity examined through all-atom molecular dynamics
,”
Langmuir
30
,
12775
(
2014
).
53.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
, “
CP2K: Atomistic simulations of condensed matter systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
(
2014
).
54.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
, and
M.
Parrinello
, “
Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
,
103
(
2005
).
55.
M.
Sulpizi
,
M.
Salanne
,
M.
Sprik
, and
M.
Gaigeot
, “
Vibrational sum frequency generation spectroscopy of the water liquid-vapor interface from density functional theory-based molecular dynamics simulations
,”
J. Phys. Chem. Lett.
4
,
83
(
2013
).
56.
T.
Ohto
,
K.
Usui
,
T.
Hasegawa
,
M.
Bonn
, and
Y.
Nagata
, “
Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function
,”
J. Chem. Phys.
143
,
124702
(
2015
).
57.
S.
Pezzotti
,
D.
Galimberti
, and
M.
Gaigeot
, “
2D H-bond network as the topmost skin to the air-water interface
,”
J. Phys. Chem. Lett.
8
,
3133
(
2017
).
58.
A.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A: At., Mol., Opt.
38
,
3098
(
1988
).
59.
C.
Lee
,
W.
Yang
, and
R.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
60.
S.
Grimme
, “
Accurate description of van der Waals complexes by density functional theory including empirical corrections
,”
J. Comput. Chem.
25
,
1463
(
2004
).
61.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
(
2006
).
62.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
(
1996
).
63.
S.
Nose
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
(
1984
).
64.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
65.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
(
1983
).
66.
J.
Wang
,
R.
Wolf
,
J.
Caldwell
,
P.
Kollman
, and
D.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
(
2004
).
67.
C.
Bayly
,
P.
Cieplak
,
W.
Cornell
, and
P.
Kollman
, “
A well behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model
,”
J. Phys. Chem.
97
,
10269
(
1993
).
68.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
 et al, gaussian 09, Revision A.02,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
69.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
(
1981
).
70.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
).
71.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
(
1993
).
72.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
(
1995
).
73.
S.
Pronk
,
S.
Pall
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M. K.
Kasson
,
D.
Van Der Spoel
 et al, “
GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
,”
Bioinformatics
29
,
845
(
2013
).
74.
L.
Martinez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M. A.
Martinez
, “
Package for building initial con gurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
(
2009
).
75.
N.
Yasoshima
,
M.
Fukuoka
,
H.
Kitano
,
S.
Kagaya
,
T.
Ishiyama
, and
M.
Gemmei-Ide
, “
Diffusion-controlled recrystallization of water sorbed into poly(meth)acrylates revealed by variable-temperature mid-infrared spectroscopy and molecular dynamics simulation
,”
J. Phys. Chem. B
121
,
5133
(
2017
).
76.
A.
Morita
and
J. T.
Hynes
, “
A theoretical analysis of the sum frequency generation spectrum of the water surface. II
,”
J. Phys. Chem. B
106
,
673
(
2002
).
77.
A.
Morita
and
T.
Ishiyama
, “
Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy
,”
Phys. Chem. Chem. Phys.
10
,
5801
(
2008
).
78.
T.
Ishiyama
and
A.
Morita
, “
Analysis of anisotropic local field in sum frequency generation spectroscopy with the charge response kernel water model
,”
J. Chem. Phys.
131
,
244714
(
2009
).
79.
J.
Lommerse
,
S.
Price
, and
R.
Taylor
, “
Hydrogen bonding of carbonyl, ether, and ester oxygen atoms with alkanol hydroxyl groups
,”
J. Comput. Chem.
18
,
757
(
1997
).
80.
J.
Clayden
,
N.
Greeves
,
S.
Warren
, and
P.
Wothers
,
Organic Chemistry
, 2nd ed. (
Oxford University Press
,
Oxford
,
2001
).
81.
K.
Kitaura
and
K.
Morokuma
, “
A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation
,”
Int. J. Quantum Chem.
10
,
325
(
1976
).
82.
A.
Morita
and
J. T.
Hynes
, “
A theoretical analysis of the sum frequency generation spectrum of the water surface
,”
Chem. Phys.
258
,
371
(
2000
).
83.
T.
Ishihara
,
T.
Ishiyama
, and
A.
Morita
, “
Surface structure of methanol/water solutions via sum frequency orientational analysis and molecular dynamics simulation
,”
J. Phys. Chem. C
119
,
9879
(
2015
).

Supplementary Material

You do not currently have access to this content.