Using an advanced computational methodology implemented in CP2K, a non-local PBE0-TC-LRC density functional and the recently implemented linear response formulation of the Time-dependent Density Functional Theory equations, we test the interpretation of the optical absorption and photoluminescence signatures attributed by previous experimental and theoretical studies to O-vacancies in two widely used oxides—cubic MgO and monoclinic (m)-HfO2. The results obtained in large periodic cells including up to 1000 atoms emphasize the importance of accurate predictions of defect-induced lattice distortions. They confirm that optical transitions of O-vacancies in 0, +1, and +2 charge states in MgO all have energies close to 5 eV. We test the models of photoluminescence of O-vacancies proposed in the literature. The photoluminescence of VO+2 centers in m-HfO2 is predicted to peak at 3.7 eV and originate from radiative tunneling transition between a VO+1 center and a self-trapped hole created by the 5.2 eV excitation.

1.
A. I.
Popov
,
E. A.
Kotomin
, and
J.
Maier
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
3084
(
2010
).
2.
G.
Pacchioni
,
Solid State Sci.
2
,
161
(
2000
).
3.
A. L.
Shluger
,
A. S.
Foster
,
J. L.
Gavartin
, and
P. V.
Sushko
, in
Nano and Giga Challenges in Microelectronics
, edited by
J.
Greer
,
A.
Korkin
, and
J.
Labanowski
(
Elsevier
,
2003
), pp.
151
222
.
4.
M. V.
Ganduglia-Pirovano
,
A.
Hofmann
, and
J.
Sauer
,
Surf. Sci. Rep.
62
,
219
(
2007
).
5.
Y.
Chen
,
R. T.
Williams
, and
W. A.
Sibley
,
Phys. Rev.
182
,
960
(
1969
).
6.
R. C.
Whited
and
W. C.
Walker
,
Phys. Rev. Lett.
22
,
1428
(
1969
).
7.
L. A.
Kappers
,
R. L.
Kroes
, and
E. B.
Hensley
,
Phys. Rev. B
1
,
4151
(
1970
).
8.
G. H.
Rosenblatt
,
M. W.
Rowe
,
G. P.
Williams
, Jr
,
R. T.
Williams
, and
Y.
Chen
,
Phys. Rev. B
39
,
10309
(
1989
).
9.
A.
Lushchik
,
T.
Kärner
,
C.
Lushchik
,
E.
Vasil’chenko
,
S.
Dolgov
,
V.
Issahanyan
, and
P.
Liblik
,
Phys. Status Solidi C
4
,
1084
(
2007
).
10.
E.
Feldbach
,
R.
Jaaniso
,
M.
Kodu
,
V. P.
Denks
,
A.
Kasikov
,
P.
Liblik
,
A.
Maaroos
,
H.
Mändar
, and
M.
Kirm
,
J. Mater. Sci.: Mater. Electron.
20
,
321
(
2009
).
11.
F.
Illas
and
G.
Pacchioni
,
J. Chem. Phys.
108
,
7835
(
1998
).
12.
C.
Sousa
and
F.
Illas
,
J. Chem. Phys.
115
,
1435
(
2001
).
13.
M. A.
Monge
,
R.
Gonzalez
,
J. E. M.
Santiuste
,
R.
Pareja
,
Y.
Chen
,
E. A.
Kotomin
, and
A. I.
Popov
,
Nucl. Instrum. Methods Phys. Res., Sect. B
166
,
220
(
2000
).
14.
R.
González
,
M. A.
Monge
,
J. E. M.
Santiuste
,
R.
Pareja
,
Y.
Chen
,
E.
Kotomin
,
M. M.
Kukla
, and
A. I.
Popov
,
Phys. Rev. B
59
,
4786
(
1999
).
15.
P.
Rinke
,
A.
Schleife
,
E.
Kioupakis
,
A.
Janotti
,
C.
Rödl
,
F.
Bechstedt
,
M.
Scheffler
, and
C. G.
Van de Walle
,
Phys. Rev. Lett.
108
,
126404
(
2012
).
16.
G. P.
Summers
,
T. M.
Wilson
,
B. T.
Jeffries
,
H. T.
Tohver
,
Y.
Chen
, and
M. M.
Abraham
,
Phys. Rev. B
27
,
1283
(
1983
).
17.
T. M.
Wilson
and
R. F.
Wood
,
J. Phys. Colloq.
37
,
C7
(
1976
).
18.
C. H.
Lien
,
Y. S.
Chen
,
H. Y.
Lee
,
P. S.
Chen
,
F. T.
Chen
, and
M. -J.
Tsai
The highly scalable and reliable hafnium oxide ReRAM and its future challenges
,” (
IEEE
,
2010
), pp.
1084
1087
.
19.
H.
Akinaga
and
H.
Shima
,
Proc. IEEE
98
,
2237
(
2010
).
20.
B.
Traoré
,
P.
Blaise
,
E.
Vianello
,
E.
Jalaguier
,
G.
Molas
,
J. F.
Nodin
,
L.
Perniola
,
B.
De Salvo
, and
Y.
Nishi
, in
2014 IEEE International Reliability Physics Symposium
(
IEEE
,
2014
) p.
5E.2
.
21.
R.
Degraeve
,
A.
Fantini
,
G.
Gorine
,
P.
Roussel
,
S.
Clima
,
C. Y.
Chen
,
B.
Govoreanu
,
L.
Goux
,
D.
Linten
,
M.
Jurczak
 et al, in
2016 IEEE International Reliability Physics Symposium
(
IEEE
,
2016
) p.
6C.1
.
22.
R.
Öttking
,
S.
Kupke
,
E.
Nadimi
,
R.
Leitsmann
,
F.
Lazarevic
,
P.
Plänitz
,
G.
Roll
,
S.
Slesazeck
,
M.
Trentzsch
, and
T.
Mikolajick
,
Phys. Status Solidi A
212
,
547
(
2015
).
23.
S. R.
Bradley
,
G.
Bersuker
, and
A. L.
Shluger
,
J. Phys.: Condens. Matter
27
,
415401
(
2015
).
24.
T. V.
Perevalov
,
V. S.
Aliev
,
V. A.
Gritsenko
,
A. A.
Saraev
,
V. V.
Kaichev
,
E. V.
Ivanova
, and
M. V.
Zamoryanskaya
,
Appl. Phys. Lett.
104
,
071904
(
2014
).
25.
V. A.
Gritsenko
,
T. V.
Perevalov
, and
D. R.
Islamov
,
Phys. Rep.
613
,
1
(
2016
).
26.
D. M.
Ramo
,
J. L.
Gavartin
,
A. L.
Shluger
, and
G.
Bersuker
,
Phys. Rev. B
75
,
205336
(
2007
).
27.
V. A.
Gritsenko
,
D. R.
Islamov
,
T. V.
Perevalov
,
V. S.
Aliev
,
A. P.
Yelisseyev
,
E. E.
Lomonova
,
V. A.
Pustovarov
, and
A.
Chin
,
J. Phys. Chem. C
120
,
19980
(
2016
).
28.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
29.
M.
Guidon
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
5
,
3010
(
2009
).
30.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
31.
M.
Ernzerhof
and
J. P.
Perdew
,
J. Chem. Phys.
109
,
3313
(
1998
).
32.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
33.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
127
,
114105
(
2007
).
34.
M.
Guidon
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
6
,
2348
(
2010
).
35.
P.
Merlot
,
R.
Izsák
,
A.
Borgoo
,
T.
Kjærgaard
,
T.
Helgaker
, and
S.
Reine
,
J. Chem. Phys.
141
,
094104
(
2014
).
36.
A. F.
Izmaylov
and
G. E.
Scuseria
,
J. Chem. Phys.
129
,
034101
(
2008
).
37.
R. M.
Hazen
,
Am. Mineral.
61
,
266
(
1976
), see http://www.minsocam.org/ammin/AM61/AM61_266.pdf.
38.
R. E.
Hann
,
P. R.
Suitch
, and
J. L.
Pentecost
,
J. Am. Ceram. Soc.
68
,
C285
(
1985
).
39.
M.
Balog
,
M.
Schieber
,
M.
Michman
, and
S.
Patai
,
Thin Solid Films
41
,
247
(
1977
).
40.
L. E.
Halliburton
,
D. L.
Cowan
, and
L. V.
Holroyd
,
Phys. Rev. B
12
,
3408
(
1975
).
41.
C. J.
Krap
,
M.
Glasbeek
, and
J. D. W.
Van Voorst
,
Phys. Rev. B
17
,
61
(
1978
).
42.
A.
Lushchik
,
C.
Lushchik
,
K.
Schwartz
,
F.
Savikhin
,
E.
Shablonin
,
A.
Shugai
, and
E.
Vasilchenko
,
Nucl. Instrum. Methods Phys. Res., Sect. B
277
,
40
(
2012
).
43.
T.
Koyama
and
T.
Suemoto
,
Rep. Prog. Phys.
74
,
076502
(
2011
).
44.
R. O.
Jones
and
O.
Gunnarsson
,
Rev. Mod. Phys.
61
,
689
(
1989
).
45.
T.
Timusk
and
W.
Martienssen
,
Phys. Rev.
128
,
1656
(
1962
).
46.
A. L.
Shluger
and
K.
Tanimura
,
Phys. Rev. B
61
,
5392
(
2000
).
47.
J.
Aarik
,
H.
Mändar
,
M.
Kirm
, and
L.
Pung
,
Thin Solid Films
466
,
41
(
2004
).
48.
K. P.
McKenna
,
M. J.
Wolf
,
A. L.
Shluger
,
S.
Lany
, and
A.
Zunger
,
Phys. Rev. Lett.
108
,
116403
(
2012
).
49.
D. M.
Ramo
,
P. V.
Sushko
, and
A. L.
Shluger
,
Phys. Rev. B
85
,
024120
(
2012
).
50.
D. M.
Ramo
,
A. L.
Shluger
,
J. L.
Gavartin
, and
G.
Bersuker
,
Phys. Rev. Lett.
99
,
155504
(
2007
).
52.
A.
Shluger
,
E.
Kotomin
, and
L.
Kantorovich
,
Solid State Commun.
42
,
749
(
1982
).
53.
E. V.
Ivanova
,
M. V.
Zamoryanskaya
,
V. A.
Pustovarov
,
V. S.
Aliev
,
V. A.
Gritsenko
, and
A. P.
Yelisseyev
,
J. Exp. Theor. Phys.
120
,
710
(
2015
).
54.
M. E.
Casida
,
J. Mol. Struct.: THEOCHEM
914
,
3
(
2009
).
55.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
56.
M.
Iannuzzi
,
T.
Chassaing
,
T.
Wallman
, and
J.
Hutter
,
Chimia Int. J. Chem.
59
,
499
(
2005
).
57.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
(
1999
).
58.
M.
Crouzeix
,
B.
Philippe
, and
M.
Sadkane
,
SIAM J. Sci. Comput.
15
,
62
(
1994
).
59.
T.
Kowalczyk
,
S. R.
Yost
, and
T. V.
Voorhis
,
J. Chem. Phys.
134
,
054128
(
2011
).
You do not currently have access to this content.