2D-Raman-THz spectroscopy of liquid water, which has been presented recently [J. Savolainen et al., Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)], directly probes the intermolecular degrees of freedom of the hydrogen-bond network. However, being a relatively new technique, its information content is not fully explored to date. While the spectroscopic signal can be simulated based on molecular dynamics simulation in connection with a water force field, it is difficult to relate spectroscopic signatures to the underlying microscopic features of the force field. Here, a completely different approach is taken that starts from an as simple as possible model, i.e., a single vibrational mode with electrical and mechanical anharmonicity augmented with homogeneous and inhomogeneous broadening. An intuitive Feynman diagram picture is developed for all possible pulse sequences of hybrid 2D-Raman-THz spectroscopy. It is shown that the model can explain the experimental data essentially quantitatively with a very small set of parameters, and it is tentatively concluded that the experimental signal originates from the hydrogen-bond stretching vibration around 170 cm−1. Furthermore, the echo observed in the experimental data can be quantified by fitting the model. A dominant fraction of its linewidth is attributed to quasi-inhomogeneous broadening in the slow-modulation limit with a correlation time of 370 fs, reflecting the lifetime of the hydrogen-bond networks giving rise to the absorption band.

1.
J. E.
Bertie
and
Z.
Lan
, “
Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25°C between 15,000 and 1 cm−1
,”
Appl. Spectrosc.
50
,
1047
(
1996
).
2.
Y.
Tanimura
and
S.
Mukamel
, “
2-dimensional femtosecond vibrational spectroscopy of liquids
,”
J. Chem. Phys.
99
,
9496
(
1993
).
3.
K.
Okumura
and
Y.
Tanimura
, “
Femtosecond two-dimensional spectroscopy from anharmonic vibrational modes of molecules in the condensed phase
,”
J. Chem. Phys.
107
,
2267
(
1997
).
4.
D.
Vanden Bout
,
L. J.
Muller
, and
M.
Berg
, “
Ultrafast Raman echoes in liquid acetonitrile
,”
Phys. Rev. Lett.
67
,
3700
(
1991
).
5.
R.
Inaba
,
K.
Tominaga
,
M.
Tasumi
,
K. A.
Nelson
, and
K.
Yoshihara
, “
Observation of homogeneous vibrational dephasing in benzonitrile by ultrafast Raman echoes
,”
Chem. Phys. Lett.
211
,
183
(
1993
).
6.
L. J.
Muller
,
D.
Vanden Bout
, and
M.
Berg
, “
Broadening of vibrational lines by attractive forces: Ultrafast Raman echo experiments in a CH3I:CDCl3 mixture
,”
J. Chem. Phys.
99
,
810
(
1993
).
7.
A.
Tokmakoff
,
M. J.
Lang
,
D. S.
Larsen
,
G. R.
Fleming
,
V.
Chernyak
, and
S.
Mukamel
, “
Two-dimensional Raman spectroscopy of vibrational interactions in liquids
,”
Phys. Rev. Lett.
79
,
2702
(
1997
).
8.
D. A.
Blank
,
L. J.
Kaufman
, and
G. R.
Fleming
, “
Fifth-order two-dimensional Raman spectra of CS2 are dominated by third-order cascades
,”
J. Chem. Phys.
111
,
3105
(
1999
).
9.
D. A.
Blank
,
L. J.
Kaufman
, and
G. R.
Fleming
, “
Direct fifth-order electronically nonresonant Raman scattering from CS2 at room temperature
,”
J. Chem. Phys.
113
,
771
(
2000
).
10.
L. J.
Kaufman
,
J.
Heo
,
L. D.
Ziegler
, and
G. R.
Fleming
, “
Heterodyne-detected fifth-order nonresonant Raman scattering from room temperature CS2
,”
Phys. Rev. Lett.
88
,
207402
(
2002
).
11.
O.
Golonzka
,
N.
Demirdöven
,
M.
Khalil
, and
A.
Tokmakoff
, “
Separation of cascaded and direct fifth-order Raman signals using phase-sensitive intrinsic heterodyne detection
,”
J. Chem. Phys.
113
,
9893
(
2000
).
12.
K. J.
Kubarych
,
C. J.
Milne
, and
R. J.
Miller
, “
Fifth-order two-dimensional Raman spectroscopy: A new direct probe of the liquid state
,”
Int. Rev. Phys. Chem.
22
,
497
(
2003
).
13.
Y. L.
Li
,
L.
Huang
,
R. J.
Miller
,
T.
Hasegawa
, and
Y.
Tanimura
, “
Two-Dimensional fifth-order Raman spectroscopy of liquid formamide: Experiment and theory
,”
J. Chem. Phys.
128
,
234507
(
2008
).
14.
W.
Kuehn
,
K.
Reimann
,
M.
Woerner
, and
T.
Elsaesser
, “
Phase-resolved two-dimensional spectroscopy based on collinear n-wave mixing in the ultrafast time domain
,”
J. Chem. Phys.
130
,
164503
(
2009
).
15.
W.
Kuehn
,
K.
Reimann
,
M.
Woerner
,
T.
Elsaesser
,
R.
Hey
, and
U.
Schade
, “
Strong correlation of electronic and lattice excitations in GaAs/AlGaAs semiconductor quantum wells revealed by two-dimensional terahertz spectroscopy
,”
Phys. Rev. Lett.
107
,
067401
(
2011
).
16.
W.
Kuehn
,
K.
Reimann
,
M.
Woerner
,
T.
Elsaesser
, and
R.
Hey
, “
Two-dimensional terahertz correlation spectra of electronic excitations in semiconductor quantum wells
,”
J. Phys. Chem. B
115
,
5448
(
2011
).
17.
T.
Elsaesser
,
K.
Reimann
, and
M.
Woerner
, “
Focus: Phase-resolved nonlinear terahertz spectroscopy—From charge dynamics in solids to molecular excitations in liquids
,”
J. Chem. Phys.
142
,
212301
(
2015
).
18.
J.
Lu
,
Y.
Zhang
,
H. Y.
Hwang
,
B. K.
Ofori-Okai
,
S.
Fleischer
, and
K. A.
Nelson
, “
Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
11800
(
2016
).
19.
C.
Somma
,
G.
Folpini
,
K.
Reimann
,
M.
Woerner
, and
T.
Elsaesser
, “
Phase-resolved two-dimensional terahertz spectroscopy including off-resonant interactions beyond the χ(3) limit
,”
J. Chem. Phys.
144
,
184202
(
2016
).
20.
I. A.
Finneran
,
R.
Welsch
,
M. A.
Allodi
,
T. F.
Miller
, and
G. A.
Blake
, “
Coherent two-dimensional terahertz-terahertz-Raman spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
6857
(
2016
).
21.
I. A.
Finneran
,
R.
Welsch
,
M. A.
Allodi
,
T. F.
Miller
, and
G. A.
Blake
, “
2D THz-THz-Raman photon-echo spectroscopy of molecular vibrations in liquid bromoform
,”
J. Phys. Chem. Lett.
8
,
4640
(
2017
).
22.
J.
Savolainen
,
S.
Ahmed
, and
P.
Hamm
, “
Two-dimensional Raman-THz spectroscopy of water
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
20402
(
2013
).
23.
A.
Shalit
,
S.
Ahmed
,
J.
Savolainen
, and
P.
Hamm
, “
Terahertz echoes reveal the inhomogeneity of aqueous salt solutions
,”
Nat. Chem.
9
,
273
(
2017
).
24.
A.
Berger
,
G.
Ciardi
,
D.
Sidler
,
P.
Hamm
, and
A.
Shalit
, “
The impact of nuclear quantum effects on the structural inhomogeneity of liquid water
,”
Proc. Natl. Acad. Sci. U.S.A
(in press).
25.
P.
Hamm
and
M. T.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
Cambridge
,
2011
).
26.
M.
Cho
, “
Theoretical description of the vibrational echo spectroscopy by time-resolved infrared-infrared-visible difference-frequency generation
,”
J. Chem. Phys.
111
,
10587
(
1999
).
27.
P.
Hamm
and
J.
Savolainen
, “
Two-dimensional-Raman-terahertz spectroscopy of water: Theory
,”
J. Chem. Phys.
136
,
094516
(
2012
).
28.
P.
Hamm
,
J.
Savolainen
,
J.
Ono
, and
Y.
Tanimura
, “
Note: Inverted time-ordering in two-dimensional-Raman-terahertz spectroscopy of water
,”
J. Chem. Phys.
136
,
236101
(
2012
).
29.
P.
Hamm
, “
2D-Raman-THz spectroscopy: A sensitive test of polarizable water models
,”
J. Chem. Phys.
141
,
184201
(
2014
).
30.
P.
Hamm
and
A.
Shalit
, “
Perspective: Echoes in 2D-Raman-THz spectroscopy
,”
J. Chem. Phys.
146
,
130901
(
2017
).
31.
T.
Steffen
,
J. T.
Fourkas
, and
K.
Duppen
, “
Time resolved four- and six-wave mixing in liquids. I. Theory
,”
J. Chem. Phys.
105
,
7364
(
1996
).
32.
T.
Steffen
and
K.
Duppen
, “
Population relaxation and non-Markovian frequency fluctuations in third- and fifth-order Raman scattering
,”
Chem. Phys.
233
,
267
(
1998
).
33.
S.
Saito
and
I.
Ohmine
, “
Off-resonant fifth-order nonlinear response of water and CS2: Analysis based on normal modes
,”
J. Chem. Phys.
108
,
240
(
1998
).
34.
A.
Ma
and
R. M.
Stratt
, “
Fifth-order Raman spectrum of an atomic liquid: Simulation and instantaneous normal mode calculation
,”
Phys. Rev. Lett.
85
,
1004
(
2000
).
35.
T. l. C.
Jansen
,
J. G.
Snijders
, and
K.
Duppen
, “
The third- and fifth-order nonlinear Raman response of liquid CS2 calculated using a finite field nonequilibrium molecular dynamics method
,”
J. Chem. Phys.
113
,
307
(
2000
).
36.
K.
Okumura
and
Y.
Tanimura
, “
Energy-level diagrams and their contribution to fifth-order Raman and second-order infrared responses: Distinction between relaxation models by two-dimensional spectroscopy
,”
J. Phys. Chem. A
107
,
8092
(
2003
).
37.
S.
Saito
and
I.
Ohmine
, “
Fifth-order two-dimensional Raman spectroscopy of liquid water, crystalline ice Ih and amorphous ices: Sensitivity to anharmonic dynamics and local hydrogen bond network structure
,”
J. Chem. Phys.
125
,
084506
(
2006
).
38.
T.
Hasegawa
and
Y.
Tanimura
, “
Calculating fifth-order Raman signals for various molecular liquids by equilibrium and nonequilibrium hybrid molecular dynamics simulation algorithms
,”
J. Chem. Phys.
125
,
074512
(
2006
).
39.
M.
Cho
, “
Theoretical description of two-dimensional vibrational spectroscopy by infrared-infrared-visible sum frequency generation
,”
Phys. Rev. A
61
,
023406
(
2000
).
40.
W.
Zhao
and
J. C.
Wright
, “
Doubly vibrationally enhanced four wave mixing: The optical analog to 2D NMR
,”
Phys. Rev. Lett.
84
,
1411
(
2000
).
41.
R.
Guo
,
F.
Fournier
,
P. M.
Donaldson
,
E. M.
Gardner
,
I. R.
Gould
, and
D. R.
Klug
, “
Detection of complex formation and determination of intermolecular geometry through electrical anharmonic coupling of molecular vibrations using electron-vibration-vibration two-dimensional infrared spectroscopy
,”
Phys. Chem. Chem. Phys.
11
,
8417
(
2009
).
42.
M.
Grechko
,
T.
Hasegawa
,
F.
D’Angelo
,
H.
Ito
,
D.
Turchinovich
,
Y.
Nagata
, and
M.
Bonn
, “
Coupling between intra-and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy
,”
Nat. Commun.
9
,
885
(
2018
).
43.
H.
Ito
,
T.
Hasegawa
, and
Y.
Tanimura
, “
Calculating two-dimensional THz-Raman-THz and Raman-THz-THz signals for various molecular liquids: The samplers
,”
J. Chem. Phys.
141
,
124503
(
2014
).
44.
H.
Ito
,
J. Y.
Jo
, and
Y.
Tanimura
, “
Notes on simulating two-dimensional Raman and terahertz-Raman signals with a full molecular dynamics simulation approach
,”
Struct. Dyn.
2
,
054102
(
2015
).
45.
T.
Ikeda
,
H.
Ito
, and
Y.
Tanimura
, “
Analysis of 2D THz-Raman spectroscopy using a non-Markovian Brownian oscillator model with nonlinear system-bath interactions
,”
J. Chem. Phys.
142
,
212421
(
2015
).
46.
Z.
Pan
,
T.
Wu
,
T.
Jin
,
Y.
Liu
,
Y.
Nagata
,
R.
Zhang
, and
W.
Zhuang
, “
Low frequency 2D Raman-THz spectroscopy of ionic solution: A simulation study
,”
J. Chem. Phys.
142
,
212419
(
2015
).
47.
H.
Ito
,
T.
Hasegawa
, and
Y.
Tanimura
, “
Effects of intermolecular charge transfer in liquid water on Raman spectra
,”
J. Phys. Chem. Lett.
7
,
4147
(
2016
).
48.
H.
Ito
and
Y.
Tanimura
, “
Simulating two-dimensional infrared-Raman and Raman spectroscopies for intermolecular and intramolecular modes of liquid water
,”
J. Chem. Phys.
144
,
074201
(
2016
).
49.
P. W.
Atkins
and
R. S.
Friedman
,
Molecular Quantum Mechanics
(
Oxford University Press
,
2010
).
50.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloe
,
Quantum Mechanics
(
Wiley-VCH
,
1991
), Vol. 2.
51.
S.
Ahmed
,
J.
Savolainen
, and
P.
Hamm
, “
The effect of the Gouy phase in optical-pump-THz-probe spectroscopy
,”
Opt. Express
22
,
4256
(
2014
).
52.
E. W.
Castner
,
Y. J.
Chang
,
Y. C.
Chu
, and
G. E.
Walrafen
, “
The intermolecular dynamics of liquid water
,”
J. Chem. Phys.
102
,
653
(
1995
).
53.
J. B.
Asbury
,
T.
Steinel
,
K.
Kwak
,
S. A.
Corcelli
,
C. P.
Lawrence
,
J. L.
Skinner
, and
M. D.
Fayer
, “
Dynamics of water probed with vibrational echo correlation spectroscopy
,”
J. Chem. Phys.
121
,
12431
(
2004
).
54.
S.
Yeremenko
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
, “
Hydrogen-bond dynamics in water explored by heterodyne-detected photon echo
,”
Chem. Phys. Lett.
369
,
107
(
2003
).
55.
J. D.
Eaves
,
J. J.
Loparo
,
C. J.
Fecko
,
S. T.
Roberts
,
A.
Tokmakoff
, and
P. L.
Geissler
, “
Hydrogen bonds in liquid water are broken only fleetingly
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
13019
(
2005
).
56.
F.
Perakis
,
S.
Widmer
, and
P.
Hamm
, “
Two-dimensional infrared spectroscopy of isotope-diluted ice Ih
,”
J. Chem. Phys.
134
,
204505
(
2011
).
57.
S.
Habershon
,
T. E.
Markland
, and
D. E.
Manolopoulos
, “
Competing quantum effects in the dynamics of a flexible water model
,”
J. Chem. Phys.
131
,
024501
(
2009
).
58.
D.
Sidler
,
M.
Meuwly
, and
P.
Hamm
, “
An efficient water force field calibrated against intermolecular THz and Raman spectra
,”
J. Chem. Phys.
148
,
244504
(
2018
).
You do not currently have access to this content.