The diffusion of molecules in complex intracellular environments can be strongly influenced by spatial heterogeneity and stochasticity. A key challenge when modelling such processes using stochastic random walk frameworks is that negative jump coefficients can arise when transport operators are discretized on heterogeneous domains. Often this is dealt with through homogenization approximations by replacing the heterogeneous medium with an effective homogeneous medium. In this work, we present a new class of homogenization approximations by considering a stochastic diffusive transport model on a one-dimensional domain containing an arbitrary number of layers with different jump rates. We derive closed form solutions for the kth moment of particle lifetime, carefully explaining how to deal with the internal interfaces between layers. These general tools allow us to derive simple formulae for the effective transport coefficients, leading to significant generalisations of previous homogenization approaches. Here, we find that different jump rates in the layers give rise to a net bias, leading to a non-zero advection, for the entire homogenized system. Example calculations show that our generalized approach can lead to very different outcomes than traditional approaches, thereby having the potential to significantly affect simulation studies that use homogenization approximations.

1.
M. J.
Saxton
, “
Anomalous diffusion due to obstacles: A Monte Carlo study
,”
J. Chem. Phys.
66
,
394
401
(
1994
).
2.
K. R.
Swanson
,
E. C.
Alvord
, Jr
, and
J. D.
Murray
, “
A quantitative model for differential motility of gliomas in grey and white matter
,”
Cell Proliferation
33
,
317
329
(
2000
).
3.
S. A.
Isaacson
and
C. S.
Peskin
, “
Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations
,”
SIAM J. Sci. Comput.
28
,
47
74
(
2006
).
4.
D.
Lepzelter
and
M.
Zaman
, “
Subdiffusion of proteins and oligomers on membranes
,”
J. Chem. Phys.
137
,
175102
(
2012
).
5.
E. J.
Carr
and
M. J.
Simpson
, “
Rapid calculation of maximum particle lifetime for diffusion in complex geometries
,”
J. Chem. Phys.
148
,
094113
(
2018
).
6.
E. A.
Codling
,
M. J.
Plank
, and
S.
Benhamou
, “
Random walk models in biology
,”
J. R. Soc., Interface
5
,
813
834
(
2008
).
7.
L. J.
Allen
,
An Introduction to Stochastic Processes with Applications to Biology
(
CRC Press
,
Cleveland
,
2010
).
8.
S. A.
Isaacson
, “
A convergent reaction-diffusion master equation
,”
J. Chem. Phys.
139
,
054101
(
2013
).
9.
P.
Lötstedt
and
L.
Meinecke
, “
Simulation of stochastic diffusion via first exit times
,”
J. Comput. Phys.
300
,
862
886
(
2015
).
10.
L.
Meinecke
,
S.
Engblom
,
A.
Hellander
, and
P.
Lötstedt
, “
Analysis and design of jump coefficient in discrete stochastic diffusion models
,”
SIAM J. Sci. Comput.
38
,
A55
A83
(
2016
).
11.
L.
Meinecke
and
P.
Lötstedt
, “
Stochastic diffusion processes on Cartesian meshes
,”
J. Comput. Appl. Math.
294
,
1
11
(
2016
).
12.
L.
Meinecke
, “
Multiscale modeling of diffusion in a crowded environment
,”
Bull. Math. Biol.
79
,
2672
2695
(
2017
).
13.
S.
Engblom
,
P.
Lötstedt
, and
L.
Meinecke
, “
Mesoscopic modeling of random walk and reactions in crowded media
,”
Phys. Rev. E
98
,
033304
(
2018
).
14.
Y.
Davit
,
C. G.
Bell
,
H. M.
Byrne
,
A. C.
Lloyd
,
A. C.
Chapman
,
L. S.
Kimpton
,
G. E.
Lang
,
K. H. L.
Leonard
,
J. M.
Oliver
,
N. C.
Pearson
,
R. J.
Shipley
,
S. L.
Waters
,
J. P.
Whiteley
,
B. D.
Wood
, and
M.
Quintard
, “
Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?
,”
Adv. Water Resour.
62
,
178
206
(
2013
).
15.
B.
Derrida
, “
Velocity and diffusion constant of a periodic one-dimensional hopping model
,”
J. Stat. Phys.
31
,
433
450
(
1983
).
16.
A. M.
Berezhkovskii
,
V. Y.
Zitserman
, and
S. Y.
Shvartsman
, “
Effective diffusivity in periodic porous materials
,”
J. Chem. Phys.
119
,
6991
6993
(
2003
).
17.
J. R.
Kalnin
and
A. M.
Berezhkovskii
, “
Note: On the relation between Lifson-Jackson and Derrida formulas for effective diffusion coefficient
,”
J. Chem. Phys.
139
,
196101
(
2013
).
18.
J. R.
Kalnin
and
E. A.
Kotomin
, “
The effective diffusion coefficient in a one-dimensional discrete lattice with the inclusions
,”
Physica B
470-471
,
50
52
(
2015
).
19.
E. J.
Carr
,
I. W.
Turner
, and
P.
Perré
, “
Macroscale modelling of multilayer diffusion: Using volume averaging to correct the boundary conditions
,”
Appl. Math. Modell.
47
,
600
618
(
2017
).
20.
G.
Vaccario
,
C.
Antoine
, and
J.
Talbot
, “
First-passage times in d-dimensional heterogeneous media
,”
Phys. Rev. Lett.
115
,
240601
(
2015
).
21.
S.
Redner
,
A Guide to First Passage Processes
(
Cambridge University Press
,
2001
).
22.
A. J.
Ellery
,
M. J.
Simpson
,
S. W.
McCue
, and
R. E.
Baker
, “
Critical timescales for advection–diffusion–reaction processes
,”
Phys. Rev. E
85
,
041135
(
2012
).
23.
A. J.
Ellery
,
M. J.
Simpson
,
S. W.
McCue
, and
R. E.
Baker
, “
Moments of action provide insight into critical times for advection-diffusion-reaction processes
,”
Phys. Rev. E
86
,
031136
(
2012
).
24.
E. J.
Carr
, “
Calculating how long it takes for a diffusion process to effectively reach steady state without computing the transient solution
,”
Phys. Rev. E
96
,
012116
(
2017
).
25.
M. J.
Simpson
,
F.
Jazaei
, and
T. P.
Clement
, “
How long does it take for aquifer recharge or aquifer discharge processes to reach steady state?
,”
J. Hydrol.
501
,
241
248
(
2013
).
26.
E. J.
Carr
and
M. J.
Simpson
, “
Accurate and efficient calculation of response times for groundwater flow
,”
J. Hydrol.
558
,
470
481
(
2018
).
27.
P. V.
Gordon
,
C. B.
Muratov
, and
S. Y.
Shvartsman
, “
Local accumulation times for source, diffusion, and degradation models in two and three dimensions
,”
J. Chem. Phys.
138
,
104121
(
2013
).
28.
B. D.
Hughes
,
Random Walks and Random Environments
, Volume 1 of Random Walks (
Clarendon Press
,
Oxford
,
1995
).
29.
A. J.
Ellery
,
M. J.
Simpson
,
S. W.
McCue
, and
R. E.
Baker
, “
Simplified approach for calculating moments of action for linear reaction-diffusion equations
,”
Phys. Rev. E
88
,
054102
(
2013
).
30.
J.
Crank
,
The Mathematics of Diffusion
(
Clarendon Press
,
Oxford
,
1975
).
31.
M.
Huysmans
and
A.
Dassargues
, “
Equivalent diffusion coefficient and equivalent diffusion accessible porosity of a stratified porous medium
,”
Transp. Porous Media
66
,
421
438
(
2007
).
32.
See http://au.mathworks.com/help/optim/ug/lsqnonlin.html for MATLAB function lsqnonlin (accessed December 2018).
33.
M. J.
Simpson
and
R. E.
Baker
, “
Exact calculations of survival probability for diffusion on growing lines, disks and spheres: The role of dimension
,”
J. Chem. Phys.
143
,
094109
(
2015
).
You do not currently have access to this content.