We discuss grand canonical simulations based on density-functional theory to study the thermodynamic properties of electrochemical interfaces of metallic electrodes in aqueous environments. Water is represented using implicit solvation, here via the self-consistent continuum solvation (SCCS) model, providing a charge-density dependent dielectric boundary. The electrochemical double layer is accounted for in terms of a phenomenological continuum description. It is shown that the experimental potentials of zero charge and interfacial capacitances can be reproduced for an optimized SCCS parameter set [ρmin = 0.0013, ρmax = 0.010 25]. By performing a detailed derivation and analysis of the interface energetics for selected electrochemical systems, we are able to relate the widely used approach of the computational hydrogen electrode (CHE) to a general grand canonical description of electrified interfaces. In particular, charge-neutral CHE results are shown to be an upper-boundary estimate for the grand canonical interfacial free energies. In order to demonstrate the differences between the CHE and full grand canonical calculations, we study the pristine (100), (110), and (111) surfaces for Pt, Au, Cu, and Ag, and H or Cl electrosorbed on Pt. The calculations support the known surface reconstructions in the aqueous solution for Pt and Au. Furthermore, the predicted potential-pH dependence of proton coverage, surface charge, and interfacial pseudocapacitance for Pt is found to be in close agreement with experimental or other theoretical data as well as the predicted equilibrium shapes for Pt nanoparticles. Finally, Cl is found to interact more strongly than H with the interfacial fields, leading to significantly altered interface energetics and structure upon explicit application of an electrode potential. This work underscores the strengths and eventual limits of the CHE approach and might guide further understanding of the thermodynamics of electrified interfaces.

1.
M.
Scheffler
and
J.
Dabrowski
,
Philos. Mag. A
58
,
107
(
1988
).
2.
G.-X.
Qian
,
R. M.
Martin
, and
D. J.
Chadi
,
Phys. Rev. B
38
,
7649
(
1988
).
3.
A.
Zunger
,
S.-H.
Wei
,
L. G.
Ferreira
, and
J. E.
Bernard
,
Phys. Rev. Lett.
65
,
353
(
1990
).
4.
N.
Marzari
,
S.
de Gironcoli
, and
S.
Baroni
,
Phys. Rev. Lett.
72
,
4001
(
1994
).
5.
K.
Reuter
and
M.
Scheffler
,
Phys. Rev. Lett.
90
,
046103
(
2003
).
6.
S.
Ping Ong
,
L.
Wang
,
B.
Kang
, and
G.
Ceder
,
Chem. Mater.
20
,
1798
(
2008
).
7.
C.
Freysoldt
,
B.
Grabowski
,
T.
Hickel
,
J.
Neugebauer
,
G.
Kresse
,
A.
Janotti
, and
C. G.
Van de Walle
,
Rev. Mod. Phys.
86
,
253
(
2014
).
8.
J.
Rogal
and
K.
Reuter
, “
Ab initio atomistic thermodynamics for surfaces: A primer
,” in
Experiment, Modeling and Simulation of Gas- Surface Interactions for Reactive Flows in Hypersonic Flights
(
Neuilly–sur–Seine
,
2007
), pp.
2-1
2-18
, Educational Notes RTO–EN–AVT–142, Paper 2, available at https://th.fhi-berlin.mpg.de/th/publications/EN-AVT-142-02.pdf.
9.
W.
Zhang
,
J. R.
Smith
, and
X.-G.
Wang
,
Phys. Rev. B
70
,
024103
(
2004
).
10.
J.
Rogal
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. B
75
,
205433
(
2007
).
11.
J.
Rogal
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. Lett.
98
,
046101
(
2007
).
12.
M. J.
Hoffmann
,
M.
Scheffler
, and
K.
Reuter
,
ACS Catal.
5
,
1199
(
2015
).
13.
J. K.
Nørskov
,
J.
Rossmeisl
,
A.
Logadottir
,
L.
Lindqvist
,
J. R.
Kitchin
,
T.
Bligaard
, and
H.
Jonsson
,
J. Phys. Chem. B
108
,
17886
(
2004
).
14.
J.
Nørskov
,
T.
Bligaard
,
A.
Logadottir
,
J.
Kitchin
,
J.
Chen
,
S.
Pandelov
, and
U.
Stimming
,
J. Electrochem. Soc.
152
,
J23
(
2005
).
15.
J.
Rossmeisl
,
J. K.
Nørskov
,
C. D.
Taylor
,
M. J.
Janik
, and
M.
Neurock
,
J. Phys. Chem. B
110
,
21833
(
2006
).
16.
N.
Hörmann
,
M.
Jäckle
,
F.
Gossenberger
,
T.
Roman
,
K.
Forster-Tonigold
,
M.
Naderian
,
S.
Sakong
, and
A.
Gross
,
J. Power Sources
275
,
531
(
2015
).
17.
R.
Jinnouchi
and
A. B.
Anderson
,
Phys. Rev. B
77
,
245417
(
2008
).
18.
I.
Dabo
,
E.
Cancès
,
Y. L.
Li
, and
N.
Marzari
, e-print arXiv:0901.0096 (
2008
).
19.
I.
Dabo
,
Y.
Li
,
N.
Bonnet
, and
N.
Marzari
,
Ab Initio Electrochemical Properties of Electrode Surfaces
(
Wiley-Blackwell
,
2010
), Chap. 13, pp.
415
431
.
20.
O.
Andreussi
,
I.
Dabo
, and
N.
Marzari
,
J. Chem. Phys.
136
,
064102
(
2012
).
21.
G.
Fisicaro
,
L.
Genovese
,
O.
Andreussi
,
N.
Marzari
, and
S.
Goedecker
,
J. Chem. Phys.
144
,
014103
(
2016
).
22.
K.
Letchworth-Weaver
and
T. A.
Arias
,
Phys. Rev. B
86
,
075140
(
2012
).
23.
K.
Mathew
,
R.
Sundararaman
,
K.
Letchworth-Weaver
,
T. A.
Arias
, and
R. G.
Hennig
,
J. Chem. Phys.
140
,
084106
(
2014
).
24.
S.
Ringe
,
H.
Oberhofer
, and
K.
Reuter
,
J. Chem. Phys.
146
,
134103
(
2017
).
25.
N.
Keilbart
,
Y.
Okada
,
A.
Feehan
,
S.
Higai
, and
I.
Dabo
,
Phys. Rev. B
95
,
115423
(
2017
).
26.
Q.
Campbell
and
I.
Dabo
,
Phys. Rev. B
95
,
205308
(
2017
).
27.
F.
Nattino
,
M.
Truscott
,
N.
Marzari
, and
O.
Andreussi
, “
Continuum models of the electrochemical diffuse layer in electronic-structure calculations
,”
J. Chem. Phys.
150
,
041722
(
2019
).
28.
C.
Dupont
,
O.
Andreussi
, and
N.
Marzari
,
J. Chem. Phys.
139
,
214110
(
2013
).
29.
O.
Andreussi
and
N.
Marzari
,
Phys. Rev. B
90
,
245101
(
2014
).
30.
A. Y.
Lozovoi
,
A.
Alavi
,
J.
Kohanoff
, and
R. M.
Lynden-Bell
,
J. Chem. Phys.
115
,
1661
(
2001
).
31.
A. Y.
Lozovoi
and
A.
Alavi
,
Phys. Rev. B
68
,
245416
(
2003
).
32.
C. D.
Taylor
,
S. A.
Wasileski
,
J.-S.
Filhol
, and
M.
Neurock
,
Phys. Rev. B
73
,
165402
(
2006
).
33.
J.-S.
Filhol
and
M.
Neurock
,
Angew. Chem., Int. Ed.
45
,
402
(
2006
).
34.
U.
Benedikt
,
W. B.
Schneider
, and
A. A.
Auer
,
Phys. Chem. Chem. Phys.
15
,
2712
(
2013
).
35.
K.
Leung
and
C. M.
Tenney
,
J. Phys. Chem. C
117
,
24224
(
2013
).
36.
N.
Bonnet
and
N.
Marzari
,
Phys. Rev. Lett.
110
,
086104
(
2013
).
37.
J.
Rossmeisl
,
K.
Chan
,
R.
Ahmed
,
V.
Tripkovic
, and
M. E.
Björketun
,
Phys. Chem. Chem. Phys.
15
,
10321
(
2013
).
38.
F.
Ambrosio
,
G.
Miceli
, and
A.
Pasquarello
,
J. Chem. Phys.
143
,
244508
(
2015
).
39.
J. D.
Goodpaster
,
A. T.
Bell
, and
M.
Head-Gordon
,
J. Phys. Chem. Lett.
7
,
1471
(
2016
).
40.
M. H.
Hansen
,
C.
Jin
,
K. S.
Thygesen
, and
J.
Rossmeisl
,
J. Phys. Chem. C
120
,
13485
(
2016
).
41.
M. H.
Hansen
and
J.
Rossmeisl
,
J. Phys. Chem. C
120
,
29135
(
2016
).
42.
R.
Sundararaman
,
W. A.
Goddard
, and
T. A.
Arias
,
J. Chem. Phys.
146
,
114104
(
2017
).
43.
R.
Jinnouchi
,
K.
Kodama
, and
Y.
Morimoto
,
Curr. Opin. Electrochem.
8
,
103
(
2018
).
44.
W.
Schmickler
,
Interfacial Electrochemistry
(
Oxford University Press
,
New York, Oxford
,
1996
).
45.
S.
Trasatti
,
Electrochim. Acta
35
,
269
(
1990
).
46.
S.
Trasatti
, in
Proceedings of the IUVSTA Workshop on Surface Science and Electrochemistry
[
Surf. Sci.
335
,
1
(
1995
)].
47.
V.
Tripkovic
,
M. E.
Björketun
,
E.
Skúlason
, and
J.
Rossmeisl
,
Phys. Rev. B
84
,
115452
(
2011
).
48.
T.
Roman
and
A.
Gross
,
Phys. Rev. Lett.
110
,
156804
(
2013
).
49.
F.
Gossenberger
,
T.
Roman
,
K.
Forster-Tonigold
, and
A.
Gross
,
Beilstein J. Nanotechnol.
5
,
152
(
2014
).
50.
I.
Borukhov
,
D.
Andelman
, and
H.
Orland
,
Electrochim. Acta
46
,
221
(
2000
).
51.
K.
Leung
,
J. Phys. Chem. Lett.
1
,
496
(
2010
).
52.
S.
Trasatti
,
Advances in Electrochemical Science and Engineering
(
Wiley
,
New York
,
1977
), Vol. 10, p.
213
.
53.
L.
Blumenthal
,
J. M.
Kahk
,
R.
Sundararaman
,
P.
Tangney
, and
J.
Lischner
,
RSC Adv.
7
,
43660
(
2017
).
54.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
55.
D.
Pan
,
L.
Spanu
,
B.
Harrison
,
D. A.
Sverjensky
, and
G.
Galli
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
6646
(
2013
).
56.
N.
Bonnet
and
N.
Marzari
,
Phys. Rev. Lett.
113
,
245501
(
2014
).
57.
C.
Zhang
,
J.
Hutter
, and
M.
Sprik
,
J. Phys. Chem. Lett.
7
,
2696
(
2016
).
58.
Modern Aspects of Electrochemistry
, Volume 33 of Modern Aspects of Electrochemistry, 1st ed., edited by
R. E.
White
,
J. O.
Bockris
, and
B. E.
Conway
(
Springer US
,
1999
).
59.
S.
Trasatti
,
J. Electroanal. Chem.
329
,
237
(
1992
).
60.
D.
Kolb
and
J.
Schneider
,
Electrochim. Acta
31
,
929
(
1986
).
61.
V.
Climent
,
R.
Gómez
, and
J. M.
Feliu
,
Electrochim. Acta
45
,
629
(
1999
).
62.
S.
Trasatti
,
Electrochim. Acta
36
,
1659
(
1991
).
64.
G. N.
Derry
,
M. E.
Kern
, and
E. H.
Worth
,
J. Vac. Sci. Technol., A
33
,
060801
(
2015
).
65.
S.
Schnur
and
A.
Gross
,
New J. Phys.
11
,
125003
(
2009
).
66.
J.
Bockris
,
S.
Argade
, and
E.
Gileadi
,
Electrochim. Acta
14
,
1259
(
1969
).
67.
M. J.
Weaver
,
Langmuir
14
,
3932
(
1998
).
68.
R.
Rizo
,
E.
Sitta
,
E.
Herrero
,
V.
Climent
, and
J. M.
Feliu
, “
Interfacial electrochemistry at atomic, molecular, and nanoscale domains
,”
Electrochim. Acta
162
,
138
(
2015
).
69.
S.
Sakong
and
A.
Gross
,
J. Chem. Phys.
149
,
084705
(
2018
).
70.
S.
Sakong
,
K.
Forster-Tonigold
, and
A.
Gross
,
J. Chem. Phys.
144
,
194701
(
2016
).
71.
S.
De Waele
,
K.
Lejaeghere
,
M.
Sluydts
, and
S.
Cottenier
,
Phys. Rev. B
94
,
235418
(
2016
).
72.
N. E.
Singh-Miller
and
N.
Marzari
,
Phys. Rev. B
80
,
235407
(
2009
).
73.
R.
Sundararaman
and
K.
Schwarz
,
J. Chem. Phys.
146
,
084111
(
2017
).
74.
G.
Valette
,
J. Electroanal. Chem. Interfacial Electrochem.
138
,
37
(
1982
).
75.
N.
Lespes
and
J.-S.
Filhol
,
J. Chem. Theory Comput.
11
,
3375
(
2015
).
76.
A.
Frumkin
,
O.
Petry
, and
B.
Damaskin
,
J. Electroanal. Chem. Interfacial Electrochem.
27
,
81
(
1970
).
77.
H. A.
Hansen
,
I. C.
Man
,
F.
Studt
,
F.
Abild-Pedersen
,
T.
Bligaard
, and
J.
Rossmeisl
,
Phys. Chem. Chem. Phys.
12
,
283
(
2010
).
78.
S.
Sakong
,
M.
Naderian
,
K.
Mathew
,
R. G.
Hennig
, and
A.
Gross
,
J. Chem. Phys.
142
,
234107
(
2015
).
79.
F.
Gossenberger
,
T.
Roman
, and
A.
Gross
,
Surf. Sci.
631
,
17
(
2015
).
80.
K. J.
Vetter
and
J. W.
Schultze
,
Ber. Bunsengesellsch. Phys. Chem.
76
,
927
(
1972
).
81.
W.
Schmickler
and
S.
Trasatti
,
J. Electrochem. Soc.
153
,
L31
(
2006
).
82.
N.
Bonnet
,
T.
Morishita
,
O.
Sugino
, and
M.
Otani
,
Phys. Rev. Lett.
109
,
266101
(
2012
).
83.
S.
Venkatachalam
,
P.
Kaghazchi
,
L. A.
Kibler
,
D. M.
Kolb
, and
T.
Jacob
,
Chem. Phys. Lett.
455
,
47
(
2008
).
84.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
85.
See http://www.quantum-environment.org for ENVIRON package.
86.
G.
Prandini
,
A.
Marrazzo
,
I.
Castelli
,
N.
Mounet
, and
N.
Marzari
, A Standard Solid State Pseudopotentials (SSSP) library optimized for accuracy and efficiency, Version 1.0, data download,
2018
.
87.
N.
Marzari
,
D.
Vanderbilt
,
A.
De Vita
, and
M. C.
Payne
,
Phys. Rev. Lett.
82
,
3296
(
1999
).
88.
J. F.
Janak
,
Phys. Rev. B
18
,
7165
(
1978
).
89.
S.
Kajita
,
T.
Nakayama
, and
J.
Yamauchi
,
J. Phys.: Conf. Ser.
29
,
120
(
2006
).
90.
F.
Gossenberger
,
T.
Roman
, and
A.
Gross
,
Electrochim. Acta
216
,
152
(
2016
).
91.
P.
Havu
,
V.
Blum
,
V.
Havu
,
P.
Rinke
, and
M.
Scheffler
,
Phys. Rev. B
82
,
161418
(
2010
).
92.
R.
Tran
,
Z.
Xu
,
B.
Radhakrishnan
,
D.
Winston
,
W.
Sun
,
K. A.
Persson
, and
S. P.
Ong
,
Sci. Data
3
,
160080
(
2016
).
93.
M.
Zei
,
N.
Batina
, and
D.
Kolb
,
Surf. Sci.
306
,
L519
(
1994
).
94.
K.
Domke
,
E.
Herrero
,
A.
Rodes
, and
J. M.
Feliu
,
J. Electroanal. Chem.
552
,
115
(
2003
), Special volume dedicated to Professor Boris B. Damaskin on the occasion of his 70th birthday.
95.
T.
Pajkossy
and
D.
Kolb
,
Electrochim. Acta
46
,
3063
(
2001
).
96.
J.
Huang
,
N.
Hörmann
,
E.
Oveisi
,
A.
Loiudice
,
G. L.
De Gregorio
,
O.
Andreussi
,
N.
Marzari
, and
R.
Buonsanti
,
Nat. Commun.
9
,
3117
(
2018
).
97.
N.
Marzari
,
D.
Vanderbilt
, and
M. C.
Payne
,
Phys. Rev. Lett.
79
,
1337
(
1997
).
98.
R.
Buonsanti
, private communication.

Supplementary Material

You do not currently have access to this content.