The lifetime, coupling, and localization dynamics of electronic states in molecular films near metal electrodes fundamentally determine their propensity to act as precursors or reactants in chemical reactions, crucial for a detailed understanding of charge transport and degradation mechanisms in batteries. In the current study, we investigate the formation dynamics of small polarons and their role as intermediate electronic states in thin films of dimethyl sulfoxide (DMSO) on Cu(111) using time- and angle-resolved two-photon photoemission spectroscopy. Upon photoexcitation, a delocalized DMSO electronic state is initially populated two monolayers from the Cu surface, becoming a small polaron on a 200 fs time scale, consistent with localization due to vibrational dynamics of the DMSO film. The small polaron is a precursor state for an extremely long-lived and weakly coupled multilayer electronic state, with a lifetime of several seconds, thirteen orders of magnitude longer than the small polaron. Although the small polaron in DMSO has a lifetime of 140 fs, its role as a precursor state for long-lived electronic states could make it an important intermediate in multistep battery reactivity.

2.
S.
Stafström
,
Chem. Soc. Rev.
39
,
2484
(
2010
).
3.
S.
Fratini
,
D.
Mayou
, and
S.
Ciuchi
,
Adv. Funct. Mater.
26
,
2292
(
2016
).
4.
D.
Emin
,
Phys. Today
35
(
6
),
34
(
1982
).
5.
J. L.
Bredas
and
G. B.
Street
,
Acc. Chem. Res.
18
,
309
(
1985
).
6.
L.-C.
Ku
,
S. A.
Trugman
, and
J.
Bonča
,
Phys. Rev. B
65
,
174306
(
2002
).
7.
M.
Zoli
and
A. N.
Das
,
J. Phys.: Condens. Matter
16
,
3597
(
2004
).
8.
P.
Szymanski
,
S.
Garrett-Roe
, and
C. B.
Harris
,
Prog. Surf. Sci.
78
,
1
(
2005
).
9.
L.-C.
Ku
and
S. A.
Trugman
,
Phys. Rev. B
75
,
014307
(
2007
).
10.
J. E.
Johns
,
E. A.
Muller
,
J. M. J.
Frechet
, and
C. B.
Harris
,
J. Am. Chem. Soc.
132
,
15720
(
2010
).
11.
Z.
Feng
,
V.
Timoshevskii
,
A.
Mauger
,
C. M.
Julien
,
K. H.
Bevan
, and
K.
Zaghib
,
Phys. Rev. B
88
,
184302
(
2013
).
12.
C. J.
Chandler
and
F.
Marsiglio
,
Phys. Rev. B
90
,
125131
(
2014
).
13.
G.
Donati
,
D. B.
Lingerfelt
,
A.
Petrone
,
N.
Rega
, and
X.
Li
,
J. Phys. Chem. A
120
,
7255
(
2016
).
14.
T.
Minato
and
T.
Abe
,
Prog. Surf. Sci.
92
,
240
(
2017
).
15.
K. M.
Abraham
,
J. Electrochem. Soc.
162
,
A3021
(
2015
).
16.
M. A.
Schroeder
,
N.
Kumar
,
A. J.
Pearse
,
C.
Liu
,
S. B.
Lee
,
G. W.
Rubloff
,
K.
Leung
, and
M.
Noked
,
ACS Appl. Mater. Interfaces
7
,
11402
(
2015
).
17.
N.
Togasaki
,
T.
Momma
, and
T.
Osaka
,
J. Power Sources
294
,
588
(
2015
).
18.
A. V.
Sergeev
,
A. V.
Chertovich
,
D. M.
Itkis
,
A.
Sen
,
A.
Gross
, and
A. R.
Khokhlov
,
J. Phys. Chem. C
121
,
14463
(
2017
).
19.
D.
Martin
,
A.
Weise
, and
H.-J.
Niclas
,
Angew. Chem., Int. Ed. Engl.
6
,
318
(
1967
).
20.
W. S.
MacGregor
,
Ann. N. Y. Acad. Sci.
141
,
3
(
1967
).
21.
A.
Shen
and
J. E.
Pemberton
,
J. Electroanal. Chem.
479
,
21
(
1999
).
22.
A.
Shen
and
J. E.
Pemberton
,
J. Electroanal. Chem.
479
,
32
(
1999
).
23.
B.
Sexton
,
N.
Avery
, and
T.
Turney
,
Surf. Sci.
124
,
162
(
1983
).
24.
S. K.
Si
and
A. A.
Gewirth
,
J. Phys. Chem. B
104
,
10775
(
2000
).
25.
N.
Ikemiya
and
A. A.
Gewirth
,
J. Phys. Chem. B
104
,
873
(
2000
).
26.
M. L.
Strader
,
S.
Garrett-Roe
,
P.
Szymanski
,
S. T.
Shipman
,
J. E.
Johns
,
A.
Yang
,
E.
Muller
, and
C. B.
Harris
,
J. Phys. Chem. C
112
,
6880
(
2008
).
27.
N.-H.
Ge
,
C. M.
Wong
,
R. L.
Lingle
, Jr.
,
J. D.
McNeill
,
K. J.
Gaffney
, and
C. B.
Harris
,
Science
279
,
202
(
1998
).
28.
J.
Stähler
,
C.
Gahl
,
U.
Bovensiepen
, and
M.
Wolf
,
J. Phys. Chem. B
110
,
9637
(
2006
).
29.
M.
Muntwiler
,
Q.
Yang
, and
X.-Y.
Zhu
,
J. Electron Spectrosc. Relat. Phenom.
174
,
116
(
2009
).
30.
C. H.
Schwalb
,
M.
Marks
,
S.
Sachs
,
A.
Schöll
,
F.
Reinert
,
E.
Umbach
, and
U.
Höfer
,
Eur. Phys. J. B
75
,
23
(
2010
).
31.
J.
Stähler
,
M.
Meyer
,
U.
Bovensiepen
, and
M.
Wolf
,
Chem. Sci.
2
,
907
(
2011
).
32.
A.
Migani
,
D. J.
Mowbray
,
A.
Iacomino
,
J.
Zhao
,
H.
Petek
, and
A.
Rubio
,
J. Am. Chem. Soc.
135
,
11429
(
2013
).
33.
J. W.
Kim
,
H.
Park
, and
X.
Zhu
,
J. Phys. Chem. C
118
,
2987
(
2014
).
34.
J.
Stähler
,
J.-C.
Deinert
,
D.
Wegkamp
,
S.
Hagen
, and
M.
Wolf
,
J. Am. Chem. Soc.
137
,
3520
(
2015
).
35.
T.
Wang
,
C.
Caraiani
,
G. W.
Burg
, and
W.-L.
Chan
,
Phys. Rev. B
91
,
041201
(
2015
).
36.
D.
Emin
and
T.
Holstein
,
Phys. Rev. Lett.
36
,
323
(
1976
).
37.
J. T.
Devreese
,
Digital Encyclopedia of Applied Physics
(
WILEY-VCH Verlag GmbH & Co KGaA
,
Weinheim, Germany
,
2003
), pp.
383
412
.
38.
D.-F.
Feng
and
L.
Kevan
,
Chem. Rev.
80
,
1
(
1980
).
39.
A.
Kumar
,
J. A.
Walker
,
D. M.
Bartels
, and
M. D.
Sevilla
,
J. Phys. Chem. A
119
,
9148
(
2015
).
40.
J.
Stähler
,
M.
Meyer
,
D. O.
Kusmierek
,
U.
Bovensiepen
, and
M.
Wolf
,
J. Am. Chem. Soc.
130
,
8797
(
2008
).
41.
A. J.
Shearer
,
D. E.
Suich
,
B. W.
Caplins
, and
C. B.
Harris
,
J. Phys. Chem. C
119
,
24417
(
2015
).
42.
U.
Bovensiepen
,
C.
Gahl
,
J.
Stähler
,
M.
Bockstedte
,
M.
Meyer
,
F.
Baletto
,
S.
Scandolo
,
X. Y.
Zhu
,
A.
Rubio
, and
M.
Wolf
,
J. Phys. Chem. C
113
,
979
(
2009
).
43.
M.
Bertin
,
M.
Meyer
,
J.
Stähler
,
C.
Gahl
,
M.
Wolf
, and
U.
Bovensiepen
,
Faraday Discuss.
141
,
293
(
2009
).
44.
J.
Stähler
,
C.
Gahl
, and
M.
Wolf
,
Acc. Chem. Res.
45
,
131
(
2012
).
45.
S. B.
King
,
D.
Wegkamp
,
C.
Richter
,
M.
Wolf
, and
J.
Stähler
,
J. Phys. Chem. C
121
,
7379
(
2017
).
46.
Dynamics at Solid State Surfaces and Interfaces
, edited by
U.
Bovensiepen
,
H.
Petek
, and
M.
Wolf
(
Wiley-VCH
,
2012
), Vol. 2, pp.
155
180
.
47.
D.
Wegkamp
, “
Ultrafast electron dynamics and the role of screening
,” Ph.D. thesis,
Freie Universität Berlin
,
2014
.
48.
W.
Berthold
,
F.
Rebentrost
,
P.
Feulner
, and
U.
Höfer
,
Appl. Phys. A: Mater. Sci. Process.
78
,
131
(
2004
).
49.
H.
Petek
,
H.
Nagano
,
M.
Weida
, and
S.
Ogawa
,
Chem. Phys.
251
,
71
(
2000
).
50.
J.
Güdde
,
W.
Berthold
, and
U.
Höfer
,
Chem. Rev.
106
,
4261
(
2006
).
51.
T.
Kumagai
, personal communication (
2017
).
52.
C.
Schröter
,
B.
Roelfs
, and
T.
Solomun
,
Surf. Sci.
380
,
L441
(
1997
).
53.
S. A.
Kirillov
,
M. I.
Gorobets
,
M. M.
Gafurov
,
M. B.
Ataev
, and
K.
Rabadanov
,
J. Phys. Chem. B
117
,
9439
(
2013
).
54.
U.
Bovensiepen
,
C.
Gahl
, and
M.
Wolf
,
J. Phys. Chem. B
107
,
8706
(
2003
).
55.
J.
Patterson
and
B.
Bailey
,
Solid-State Physics: Introduction to the Theory
, 2nd ed. (
Springer-Verlag
,
Heidelberg, Germany
,
2010
).
56.
X.-Y.
Zhu
,
J. Phys. Chem. B
108
,
8778
(
2004
).
57.
J.
Savolainen
,
F.
Uhlig
,
S.
Ahmed
,
P.
Hamm
, and
P.
Jungwirth
,
Nat. Chem.
6
,
697
(
2014
).
58.
A.
Kovalenko
,
Condens. Matter Phys.
18
,
32601
(
2015
).
59.
K. L.
Sebastian
,
A.
Chakraborty
, and
M.
Tachiya
,
J. Chem. Phys.
119
,
10350
(
2003
).
60.
J. R.
Durig
,
C. M.
Player
, and
J.
Bragin
,
J. Chem. Phys.
52
,
4224
(
1970
).
61.
P. P.
Wiewiór
,
H.
Shirota
, and
E. W.
Castner
,
J. Chem. Phys.
116
,
4643
(
2002
).
62.
M. L.
Strader
and
S. E.
Feller
,
J. Phys. Chem. A
106
,
1074
(
2002
).
63.
D.
Sanchez-Portal
,
J.
Stähler
, and
X.
Zhu
, in
Dynamics at Solid State Surfaces and Interfaces
, edited by
U.
Bovensiepen
,
H.
Petek
, and
M.
Wolf
(
Wiley-VCH
,
2012
), Chap. 4, Vol. 2, pp.
155
180
.
64.

We observe a linear real-time decrease in the intensity of peak P2 with photo-illumination. Neither the ultrafast dynamics nor the pump-wait-probe measurements of P2 are affected by the intensity changes. Any real-time effects to the intensity of peak P2 were mitigated in data collection by looping through pump-probe time delays in both the forward and reverse directions followed by summing both delay directions. The origin of this intensity decrease is currently under investigation.

65.
B.
Giese
,
Acc. Chem. Res.
33
,
631
(
2000
).

Supplementary Material

You do not currently have access to this content.