We present a spin-1, three-state Ising model for the unusual thermodynamics of fluid water. Thus, besides vacant cells, we consider singly occupied cells with two accessible volumes in such a way that the local structures of low density, energy, and entropy associated with water’s low-temperature “icelike” order are characterized. The model has two order parameters that drive two phase transitions akin to the standard gas-liquid transition and water’s hypothesized liquid-liquid transition. Its mean-field equation of state enables a satisfactory description of results from experiments and simulations for the ST2 and TIP4P/2005 force fields, from the phase diagram, the density maximum, or the deeply “stretched” states to the behavior of thermodynamic response functions at low temperatures at which water exists as a supercooled liquid. It is concluded that the model may be regarded as a most basic prototype of the so-called “two-critical-point scenario.”

1.
C. A.
Angell
, “
Supercooled water
,”
Annu. Rev. Phys. Chem.
34
,
593
(
1983
).
2.
O.
Mishima
and
H. E.
Stanley
, “
The relationship between liquid, supercooled, and glassy water
,”
Nature
396
,
329
(
1998
).
3.
P. G.
Debenedetti
, “
Supercooled and glassy water
,”
J. Phys.: Condens. Matter
15
,
R1669
(
2003
).
4.
K. H.
Kim
,
A.
Späh
,
H.
Pathak
,
F.
Perakis
,
D.
Mariedahl
,
K.
Amann-Winkel
,
J. A.
Sellberg
,
J. H.
Lee
,
S.
Kim
,
J.
Park
,
K. H.
Nam
,
T.
Katayama
, and
A.
Nilsson
, “
Maxima in the thermodynamic response and correlation functions of deeply supercooled water
,”
Science
358
,
1589
(
2017
).
5.
R. J.
Speedy
and
C. A.
Angell
, “
Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at –45 °C
,”
J. Chem. Phys.
65
,
851
(
1976
).
6.
C. A.
Angell
,
M.
Oguni
, and
W. J.
Sichina
, “
Heat capacity of water at extremes of supercooling and superheating
,”
J. Phys. Chem.
86
,
998
(
1982
).
7.
D. E.
Hare
and
C. M.
Sorensen
, “
The density of supercooled water. II. Bulk samples cooled to the homogeneous nucleation limit
,”
J. Chem. Phys.
87
,
4840
(
1987
).
8.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
, “
Phase bahavior of metastable water
,”
Nature
360
,
324
(
1992
).
9.
A.
Nilsson
and
L. G. M.
Pettersson
, “
The structural origin of anomalous properties of liquid water
,”
Nat. Commun.
6
,
8998
(
2015
).
10.
P.
Gallo
,
K.
Amann-Winkel
,
C. A.
Angell
,
M. A.
Anisimov
,
F.
Caupin
,
C.
Chakravarty
,
E.
Lascaris
,
T.
Loerting
,
A. Z.
Panagiotopoulos
,
J.
Russo
,
J. A.
Sellberg
,
H. E.
Stanley
,
H.
Tanaka
,
C.
Vega
,
L.
Xu
, and
L. G. M.
Petterson
, “
Water: A tale of two liquids
,”
Chem. Rev.
116
,
7463
(
2016
).
11.
J. C.
Palmer
,
P. H.
Poole
,
F.
Sciortino
, and
P. G.
Debenedetti
, “
Advances in computational studies of the liquid-liquid transition in water and water-like models
,”
Chem. Rev.
118
,
9129
(
2018
).
12.
N. J.
Hestand
and
J. L.
Skinner
, “
Crossing the Widom line in no man’s land: Experiments, simulations, and the location of the liquid-liquid critical point in supercooled water
,”
J. Chem. Phys.
149
,
140901
(
2018
).
13.
J. C.
Palmer
,
F.
Martelli
,
Y.
Liu
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
, “
Metastable liquid-liquid transition in a molecular model of water
,”
Nature
510
,
385
(
2014
).
14.
J. C.
Palmer
,
A.
Haji-Akbari
,
R. S.
Singh
,
F.
Martelli
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
, “
Comment on ‘The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water’ [I and II, J. Chem. Phys. 135, 134503 (2011); J. Chem. Phys. 138, 214504 (2013)]
,”
J. Chem. Phys.
148
,
137101
(
2018
).
15.
Note that a modified ST2 model also exhibits a liquid-liquid transition:
F.
Smallenburg
and
F.
Sciortino
, “
Tuning the liquid-liquid transition by modulating the hydrogen-bond angular flexibility in a model for water
,”
Phys. Rev. Lett.
115
,
015701
(
2015
).
16.
F. H.
Stillinger
and
A.
Rahman
, “
Improved simulation of liquid water by molecular dynamics
,”
J. Chem. Phys.
60
,
1545
(
1974
).
17.
F.
Smallenburg
,
L.
Filion
, and
F.
Sciortino
, “
Erasing no-man’s land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles
,”
Nat. Phys.
10
,
653
(
2014
).
18.
See, e.g.,
S. V.
Buldyrev
,
G.
Malescio
,
C. A.
Angell
,
N.
Giovambattista
,
S.
Prestipino
,
F.
Saija
,
H. E.
Stanley
, and
L.
Xu
, “
Unusual phase behavior of one-component systems with two-scale isotropic interactions
,”
J. Phys.: Condens. Matter
21
,
504106
(
2009
) and references therein.
19.
P. H.
Poole
,
F.
Sciortino
,
T.
Grande
,
H. E.
Stanley
, and
C. A.
Angell
, “
Effect of hydrogen bonds on the thermodynamic behavior of liquid water
,”
Phys. Rev. Lett.
73
,
1632
(
1994
).
20.
T. M.
Truskett
,
P. G.
Debenedetti
,
S.
Sastry
, and
S.
Torquato
, “
A single-bond approach to orientation-dependent interactions and its implications for liquid water
,”
J. Chem. Phys.
111
,
2647
(
1999
).
21.
See
J.
Russo
and
H.
Tanaka
, “
Understanding water’s anomalies with locally favoured structures
,”
Nat. Commun.
5
,
3556
(
2014
) and references therein.
22.
See
J. W.
Biddle
,
R. S.
Singh
,
E. M.
Sparano
,
F.
Ricci
,
M. A.
González
,
C.
Valeriani
,
J. L. F.
Abascal
,
P. G.
Debenedetti
,
M. A.
Anisimov
, and
F.
Caupin
, “
Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions
,”
J. Chem. Phys.
146
,
034502
(
2017
) and references therein.
23.
C. A.
Cerdeiriña
,
G.
Orkoulas
, and
M. E.
Fisher
, “
Soluble model fluids with complete scaling and Yang-Yang features
,”
Phys. Rev. Lett.
116
,
040601
(
2016
).
24.
C. A.
Cerdeiriña
and
G.
Orkoulas
, “
Compressible cell gas models for asymmetric fluid criticality
,”
Phys. Rev. E
95
,
032105
(
2017
).
25.
C. A.
Cerdeiriña
and
H. E.
Stanley
, “
Ising-like models with energy-volume coupling
,”
Phys. Rev. Lett.
120
,
120603
(
2018
).
26.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
27.
M.
Blume
, “
Theory of first-order magnetic phase change in UO2
,”
Phys. Rev.
141
,
517
(
1966
);
H. W.
Capel
, “
On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting
,”
Physica
32
,
966
(
1966
).
28.
M.
Blume
,
V. J.
Emery
, and
R. B.
Griffiths
, “
Ising model for the λ transition and phase separation in He3–He4 mixtures
,”
Phys. Rev. A
4
,
1071
(
1971
).
29.
J. C.
Wheeler
and
B.
Widom
, “
Phase equilibrium and critical behavior in a two-component Bethe-lattice gas or three-component Bethe-lattice solution
,”
J. Chem. Phys.
52
,
5334
(
1970
).
30.
D.
Furman
,
S.
Dattagupta
, and
R. B.
Griffiths
, “
Global phase diagram for a three-component model
,”
Phys. Rev. B
15
,
441
(
1977
).
31.
A.
Ciach
,
W.
Gózdz
, and
A.
Perera
, “
Simple three-state lattice model for liquid water
,”
Phys. Rev. E
78
,
021203
(
2008
).
32.

An alternative (but entirely equivalent) derivation starts from Eq. (5) in the form p = −U/V + TS/V + μρ, with ρN/V the number density.

33.
R. J.
Speedy
, “
Stability-limit conjecture. An interpretation of the properties of water
,”
J. Phys. Chem.
86
,
982
(
1982
).
34.
P. G.
Debenedetti
and
M. C.
D’Antonio
, “
Stability and tensile strength of liquids exhibiting density maxima
,”
AIChE J.
34
,
447
(
1988
).
35.
S.
Sastry
,
P. G.
Debenedetti
,
F.
Sciortino
, and
H. E.
Stanley
, “
Singularity free interpretation of the thermodynamics of supercooled water
,”
Phys. Rev.
53
,
6144
(
1996
).
36.
N. S.
Osborne
,
H. F.
Stimson
, and
D. C.
Ginnings
, “
Thermal properties of saturated water and steam
,”
J. Res. Natl. Bur. Stand.
23
,
261
(
1939
).
37.
Y. E.
Altabet
,
R. S.
Singh
,
F. H.
Stillinger
, and
P. G.
Debenedetti
, “
Thermodynamic anomalies in stretched water
,”
Langmuir
33
,
11771
(
2017
).
38.
M. E.
Fisher
and
G.
Orkoulas
, “
The Yang-Yang anomaly in fluid criticality: Experiment and scaling theory
,”
Phys. Rev. Lett.
85
,
696
(
2000
).
39.
Y. C.
Kim
,
M. E.
Fisher
, and
G.
Orkoulas
, “
Asymmetric fluid criticality. I. Scaling with pressure mixing
,”
Phys. Rev. E
67
,
061506
(
2003
).
40.
Y. C.
Kim
and
M. E.
Fisher
, “
Singular coexistence-curve diameters: Experiments and simulations
,”
Chem. Phys. Lett.
414
,
185
(
2005
).
41.
H.
Tanaka
, “
Simple physical explanation of the unusual thermodynamic behavior of liquid water
,”
Phys. Rev. Lett.
80
,
5750
(
1998
).
42.
H.
Tanaka
, “
Two-order-parameter description of liquids: Critical phenomena and phase separation of supercooled liquids
,”
J. Phys.: Condens. Matter
11
,
L159
(
1999
).
43.
J. R.
Errington
and
P. G.
Debenedetti
, “
Relationship between structural order and the anomalies of liquid water
,”
Nature
409
,
318
(
2001
).
44.

Ciach et al.31 originally reported that a waterlike spin-1 lattice model exhibits two phase transitions. Our approach differs from theirs in which we characterize the problem by allowing the individual cell volumes of the lattice to fluctuate.

45.

Note also that spin-1 Ising models can lead to very complex phase diagrams, as it is the case of three-component systems.29,30 But recall that we are dealing with a one-component fluid.

46.

The existence of such an optimal density was first postulated by Poole et al.19 

47.
See
V.
Holten
,
C.
Qin
,
E.
Guillerm
,
M.
Wilke
,
J.
Rička
,
M.
Frenz
, and
F.
Caupin
, “
Compressibility anomalies in stretched water and their interplay with density anomalies
,”
J. Phys. Chem. Lett.
8
,
5519
(
2017
) and references therein.
48.
F.
Mallamace
,
C.
Corsaro
, and
H. E.
Stanley
, “
A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water
,”
Sci. Rep.
2
,
993
(
2012
).
49.
F.
Mallamace
,
C.
Corsaro
,
D.
Mallamace
,
C.
Vasi
, and
H. E.
Stanley
, “
The thermodynamical response functions and the origin of the anomalous behavior of liquid water
,”
Faraday Discuss.
167
,
95
(
2013
).
50.
M.
Hareng
and
J.
Leblond
, “
Brillouin scattering in superheated water
,”
J. Chem. Phys.
73
,
622
(
1980
).
51.
See http://webbook.nist.gov/chemistry/ for NIST Chemistry WebBook.
52.
L.
Xu
,
P.
Kumar
,
S. V.
Buldyrev
,
S.-H.
Chen
,
P. H.
Poole
,
F.
Sciortino
, and
H. E.
Stanley
, “
Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
16558
(
2005
).
53.
G.
Franzese
and
H. E.
Stanley
, “
The Widom line of supercooled water
,”
J. Phys.: Condens. Matter
19
,
205126
(
2007
).
54.
J.
Luo
,
L.
Xu
,
E.
Laskaris
,
H. E.
Stanley
, and
S. V.
Buldyrev
, “
Behavior of the Widom in critical phenomena
,”
Phys. Rev. Lett.
112
,
135701
(
2014
).
55.
P. G.
Debenedetti
,
Metastable Liquids
(
Princeton University Press
,
Princeton
,
1996
).
56.
This has been proved for the Jagla fluid:
P.
Gallo
and
F.
Sciortino
, “
Ising universality class for the liquid-liquid critical point of a one-component fluid: A finite-size scaling test
,”
Phys. Rev. Lett.
109
,
177801
(
2012
).
57.
R. B.
Griffiths
and
J. C.
Wheeler
, “
Critical points in multicomponent systems
,”
Phys. Rev. A
2
,
1047
(
1970
).
58.
C.
Vega
,
M. M.
Conde
,
C.
McBride
,
J. L. F.
Abascal
,
E. G.
Noya
,
R.
Ramírez
, and
L. M.
Sesé
, “
Heat capacity of water: A signature of nuclear quantum effects
,”
J. Chem. Phys.
132
,
046101
(
2010
).
59.
C. A.
Cerdeiriña
,
D.
González-Salgado
,
L.
Romaní
,
M. C.
Delgado
,
L. A.
Torres
, and
M.
Costas
, “
Towards and understanding of the heat capacity of liquids. A simple two-state model for molecular association
,”
J. Chem. Phys.
120
,
6648
(
2004
).
60.
L.
Onsager
, “
Crystals statistics. I. A two-dimensional model with an order-disorder transition
,”
Phys. Rev.
65
,
117
(
1944
).
61.
T. D.
Lee
and
C. N.
Yang
, “
Statistical theory of equations of state and phase transformations. II. Lattice gas and Ising model
,”
Phys. Rev.
87
,
410
(
1952
).
62.
C.
Domb
, “
On the theory of cooperative phenomena in crystals
,”
Adv. Phys.
9
,
149
(
1960
);
63.
M. E.
Fisher
, in
Critical Phenomena
, Lecture Notes in Physics Vol. 186, edited by
F. J. W.
Hahne
(
Springer-Verlag
,
New York
,
1982
), pp.
46
47
.
64.
T.
Urbic
and
K. A.
Dill
, “
Water is a cagey liquid
,”
J. Am. Chem. Soc.
140
,
17106
(
2018
).

Supplementary Material

You do not currently have access to this content.