(Semi)local density functional approximations (DFAs) are the workhorse electronic structure methods in condensed matter theory and surface science. The correlation energy density ϵc(r) (a spatial function that yields the correlation energy Ec upon integration) is central to defining such DFAs. Unlike Ec, ϵc(r) is not uniquely defined, however. Indeed, there are infinitely many functions that integrate to the correct Ec for a given electron density ρ. The challenge for constructing useful DFAs is thus to find a suitable connection between ϵc(r) and ρ. Herein, we present a new such approach by deriving ϵc(r) directly from the coupled-cluster (CC) energy expression. The corresponding energy densities are analyzed for prototypical two-electron systems. As a proof-of-principle, we construct a semilocal functional to approximate the numerical CC correlation energy densities. Importantly, the energy densities are not simply used as reference data but guide the choice of the functional form, leading to a remarkably simple and accurate correlation functional for the helium isoelectronic series. While the resulting functional is not transferable to many-electron systems (due to a lack of same-spin correlation), these results underscore the potential of the presented approach.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
A. D.
Becke
,
J. Chem. Phys.
140
,
18A301
(
2014
).
4.
W.
Kohn
,
A. D.
Becke
, and
R. G.
Parr
,
J. Phys. Chem.
100
,
12974
(
1996
).
5.
J. T.
Margraf
,
D. S.
Ranasinghe
, and
R. J.
Bartlett
,
Phys. Chem. Chem. Phys.
19
,
9798
(
2017
).
6.
L.
Goerigk
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
13
,
6670
(
2011
).
7.
N.
Mardirossian
and
M.
Head-Gordon
,
J. Chem. Phys.
144
,
214110
(
2016
).
8.
Y.
Zhao
and
D. G.
Truhlar
,
Chem. Phys. Lett.
502
,
1
(
2011
).
9.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
,
Phys. Rev. B
53
,
3764
(
1996
).
10.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
11.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
12.
N. C.
Handy
,
Theor. Chem. Acc.
123
,
165
(
2009
).
13.
N.
Mardirossian
and
M.
Head-Gordon
,
J. Chem. Phys.
142
,
074111
(
2015
).
14.
R.
Peverati
and
D. G.
Truhlar
,
Philos. Trans. R. Soc., A
372
,
20120476
(
2014
).
15.
H. L.
Schmider
and
A. D.
Becke
,
J. Chem. Phys.
109
,
8188
(
1998
).
16.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
17.
J.
Sun
,
A.
Ruzsinszky
, and
J.
Perdew
,
Phys. Rev. Lett.
115
,
036402
(
2015
).
18.
J.
Wellendorff
,
K. T.
Lundgaard
,
A.
Møgelhøj
,
V.
Petzold
,
D. D.
Landis
,
J. K.
Nørskov
,
T.
Bligaard
, and
K. W.
Jacobsen
,
Phys. Rev. B
85
,
235149
(
2012
).
19.
J.
Wellendorff
,
K. T.
Lundgaard
,
K. W.
Jacobsen
, and
T.
Bligaard
,
J. Chem. Phys.
140
,
144107
(
2014
).
20.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
21.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
22.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
23.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
24.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
120
,
8425
(
2004
).
25.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
26.
J.
Erhard
,
P.
Bleiziffer
, and
A.
Görling
,
Phys. Rev. Lett.
117
,
143002
(
2016
).
27.
I. Y.
Zhang
,
P.
Rinke
,
J. P.
Perdew
, and
M.
Scheffler
,
Phys. Rev. Lett.
117
,
133002
(
2016
).
28.
J.-D.
Chai
and
M.
Head-Gordon
,
J. Chem. Phys.
131
,
174105
(
2009
).
29.
J. T.
Margraf
,
P.
Verma
, and
R. J.
Bartlett
,
J. Chem. Phys.
145
,
104106
(
2016
).
30.
T. C.
Wiles
and
F. R.
Manby
,
J. Chem. Theory Comput.
14
,
4590
(
2018
).
31.
J.
Toulouse
,
I. C.
Gerber
,
G.
Jansen
,
A.
Savin
, and
J. G.
Ángyán
,
Phys. Rev. Lett.
102
,
096404
(
2009
).
32.
B. G.
Janesko
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Phys.
131
,
034110
(
2009
).
33.
K.
Burke
,
J. Chem. Phys.
136
,
150901
(
2012
).
35.
J. P.
Perdew
,
J.
Sun
,
R. M.
Martin
, and
B.
Delley
,
Int. J. Quantum Chem.
116
,
847
(
2016
).
36.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
37.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Sun
, and
K.
Burke
,
J. Chem. Phys.
140
,
18A533
(
2014
).
38.
T. W.
Keal
and
D. J.
Tozer
,
J. Chem. Phys.
123
,
121103
(
2005
).
39.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
40.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
41.
A. D.
Becke
,
J. Chem. Phys.
104
,
1040
(
1996
).
42.
P.-O.
Löwdin
,
Phys. Rev.
97
,
1474
(
1955
).
44.
A.
Heßelmann
and
G.
Jansen
,
Chem. Phys. Lett.
357
,
464
(
2002
).
45.
I.
Lindgren
and
S.
Salomonson
,
Int. J. Quantum Chem.
90
,
294
(
2002
).
46.
P.
Löwdin
,
J. Math. Phys.
3
,
1171
(
1962
).
47.
N.
Oliphant
and
R. J.
Bartlett
,
J. Chem. Phys.
100
,
6550
(
1994
).
48.
P.
Verma
,
A.
Perera
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
524
,
10
(
2012
).
49.
M.-C.
Kim
,
E.
Sim
, and
K.
Burke
,
Phys. Rev. Lett.
111
,
073003
(
2013
).
50.
N. C.
Handy
and
A. J.
Cohen
,
Mol. Phys.
99
,
403
(
2001
).
51.
J.
Carmona-Espíndola
,
J. L.
Gázquez
,
A.
Vela
, and
S. B.
Trickey
,
J. Chem. Theory Comput.
15
,
303
(
2019
).
52.
R. J.
Bartlett
,
V. F.
Lotrich
, and
I. V.
Schweigert
,
J. Chem. Phys.
123
,
062205
(
2005
).
53.
R. J.
Bartlett
,
I.
Grabowski
,
S.
Hirata
, and
S.
Ivanov
,
J. Chem. Phys.
122
,
034104
(
2005
).
54.
V. N.
Staroverov
,
G. E.
Scuseria
, and
E. R.
Davidson
,
J. Chem. Phys.
124
,
141103
(
2006
).
55.
T.
Heaton-Burgess
,
F. A.
Bulat
, and
W.
Yang
,
Phys. Rev. Lett.
98
,
256401
(
2007
).
56.
O. V.
Gritsenko
,
R.
van Leeuwen
, and
E. J.
Baerends
,
J. Chem. Phys.
104
,
8535
(
1996
).
57.
E.
Ospadov
,
I. G.
Ryabinkin
, and
V. N.
Staroverov
,
J. Chem. Phys.
146
,
084103
(
2017
).
58.
A.
Heßelmann
,
J. Chem. Phys.
122
,
244108
(
2005
).
59.
E. J.
Baerends
and
O. V.
Gritsenko
,
J. Chem. Phys.
123
,
062202
(
2005
).
60.
P.
Verma
and
R. J.
Bartlett
,
J. Chem. Phys.
137
,
134102
(
2012
).
61.
A.
Görling
and
M.
Levy
,
Phys. Rev. A
50
,
196
(
1994
).
62.
S.
Ivanov
,
S.
Hirata
, and
R. J.
Bartlett
,
Phys. Rev. Lett.
83
,
5455
(
1999
).
63.
T.
Gould
and
J. F.
Dobson
,
J. Chem. Phys.
138
,
014103
(
2013
).
64.
F. G.
Cruz
,
K.-C.
Lam
, and
K.
Burke
,
J. Phys. Chem. A
102
,
4911
(
1998
).
65.
P.
Süle
,
O. V.
Gritsenko
,
Á.
Nagy
, and
E. J.
Baerends
,
J. Chem. Phys.
103
,
10085
(
1995
).
66.
S. F.
Vyboishchikov
,
ChemPhysChem
18
,
3478
(
2017
).
67.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
68.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
7041
(
1987
).
69.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
97
,
4282
(
1992
).
70.
P. Y.
Ayala
and
G. E.
Scuseria
,
Chem. Phys. Lett.
322
,
213
(
2000
).
71.
R. M.
Parrish
,
L. A.
Burns
,
D. G. A.
Smith
,
A. C.
Simmonett
,
A. E.
DePrince
,
E. G.
Hohenstein
,
U.
Bozkaya
,
A. Y.
Sokolov
,
R.
Di Remigio
,
R. M.
Richard
,
J. F.
Gonthier
,
A. M.
James
,
H. R.
McAlexander
,
A.
Kumar
,
M.
Saitow
,
X.
Wang
,
B. P.
Pritchard
,
P.
Verma
,
H. F.
Schaefer
,
K.
Patkowski
,
R. A.
King
,
E. F.
Valeev
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
13
,
3185
(
2017
).
72.
D. G. A.
Smith
,
L. A.
Burns
,
D. A.
Sirianni
,
D. R.
Nascimento
,
A.
Kumar
,
A. M.
James
,
J. B.
Schriber
,
T.
Zhang
,
B.
Zhang
,
A. S.
Abbott
,
E. J.
Berquist
,
M. H.
Lechner
,
L. A.
Cunha
,
A. G.
Heide
,
J. M.
Waldrop
,
T. Y.
Takeshita
,
A.
Alenaizan
,
D.
Neuhauser
,
R. A.
King
,
A. C.
Simmonett
,
J. M.
Turney
,
H. F.
Schaefer
,
F. A.
Evangelista
,
A. E.
DePrince
,
T. D.
Crawford
,
K.
Patkowski
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
14
,
3504
(
2018
).
73.
I. G.
Ryabinkin
,
E.
Ospadov
, and
V. N.
Staroverov
,
J. Chem. Phys.
147
,
164117
(
2017
).
74.
F.
Jensen
,
J. Chem. Theory Comput.
10
,
1074
(
2014
).
75.
K. A.
Peterson
and
T. H.
Dunning
,
J. Chem. Phys.
117
,
10548
(
2002
).
76.
O.
Treutler
and
R.
Ahlrichs
,
J. Chem. Phys.
102
,
346
(
1995
).
77.
A.
Zupan
,
J. P.
Perdew
,
K.
Burke
, and
M.
Causà
,
Int. J. Quantum Chem.
61
,
835
(
1997
).
78.
P. A.
Stewart
and
P. M. W.
Gill
,
J. Chem. Soc., Faraday Trans.
91
,
4337
(
1995
).
79.
80.
N.
Rösch
and
S. B.
Trickey
,
J. Chem. Phys.
106
,
8940
(
1997
).
81.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
82.
M. J. G.
Peach
,
A. M.
Teale
,
T.
Helgaker
, and
D. J.
Tozer
,
J. Chem. Theory Comput.
11
,
5262
(
2015
).
83.
J. T.
Margraf
and
R.
Bartlett
,
J. Chem. Phys.
148
,
221103
(
2018
).
84.
S. P.
McCarthy
and
A. J.
Thakkar
,
J. Chem. Phys.
134
,
044102
(
2011
).
85.
S. J.
Chakravorty
,
S. R.
Gwaltney
,
E. R.
Davidson
,
F. A.
Parpia
, and
C. F.
Fischer
,
Phys. Rev. A
47
,
3649
(
1993
).
86.
E.
Wigner
,
Trans. Faraday Soc.
34
,
678
(
1938
).
87.
P. M. W.
Gill
,
B. G.
Johnson
,
J. A.
Pople
, and
M. J.
Frisch
,
Int. J. Quantum Chem.
44
,
319
(
1992
).
88.
N. C.
Handy
and
A. J.
Cohen
,
J. Chem. Phys.
116
,
5411
(
2002
).
89.
G. I.
Csonka
,
J. P.
Perdew
, and
A.
Ruzsinszky
,
J. Chem. Theory Comput.
6
,
3688
(
2010
).
90.
S.
Kozuch
and
J. M. L.
Martin
,
Phys. Chem. Chem. Phys.
13
,
20104
(
2011
).
91.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
92.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9793
(
2004
).
93.
T.
Takatani
,
E. G.
Hohenstein
, and
C. D.
Sherrill
,
J. Chem. Phys.
128
,
124111
(
2008
).
94.
J. T.
Margraf
and
K.
Reuter
,
J. Phys. Chem. A
122
,
6343
(
2018
).

Supplementary Material

You do not currently have access to this content.