Understanding chemical mechanisms requires estimating dynamical statistics such as expected hitting times, reaction rates, and committors. Here, we present a general framework for calculating these dynamical quantities by approximating boundary value problems using dynamical operators with a Galerkin expansion. A specific choice of basis set in the expansion corresponds to the estimation of dynamical quantities using a Markov state model. More generally, the boundary conditions impose restrictions on the choice of basis sets. We demonstrate how an alternative basis can be constructed using ideas from diffusion maps. In our numerical experiments, this basis gives results of comparable or better accuracy to Markov state models. Additionally, we show that delay embedding can reduce the information lost when projecting the system’s dynamics for model construction; this improves estimates of dynamical statistics considerably over the standard practice of increasing the lag time.

2.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
3.
E.
Vanden-Eijnden
,
Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology
(
Springer
,
2006
), Vol. 1, pp.
453
493
.
4.
A. M.
Berezhkovskii
,
A.
Szabo
,
N.
Greives
, and
H.-X.
Zhou
,
J. Chem. Phys.
141
,
204106
(
2014
).
5.
A.
Ma
,
A.
Nag
, and
A. R.
Dinner
,
J. Chem. Phys.
124
,
144911
(
2006
).
6.
V.
Ovchinnikov
,
K.
Nam
, and
M.
Karplus
,
J. Phys. Chem. B
120
,
8457
(
2016
).
7.
A.
Ghysels
,
R. M.
Venable
,
R. W.
Pastor
, and
G.
Hummer
,
J. Chem. Theory Comput.
13
,
2962
(
2017
).
8.
A. R.
Dinner
and
M.
Karplus
,
J. Phys. Chem. B
103
,
7976
(
1999
).
9.
A. R.
Dinner
,
A.
Šali
,
L. J.
Smith
,
C. M.
Dobson
, and
M.
Karplus
,
Trends Biochem. Sci.
25
,
331
(
2000
).
10.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
,
J. Chem. Phys.
108
,
1964
(
1998
).
11.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
,
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
12.
A.
Ma
and
A. R.
Dinner
,
J. Phys. Chem. B
109
,
6769
(
2005
).
13.
J.
Hu
,
A.
Ma
, and
A. R.
Dinner
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
4615
(
2008
).
14.
M.
Grünwald
,
C.
Dellago
, and
P. L.
Geissler
,
J. Chem. Phys.
129
,
194101
(
2008
).
15.
T. R.
Gingrich
and
P. L.
Geissler
,
J. Chem. Phys.
142
,
234104
(
2015
).
16.
G. A.
Huber
and
S.
Kim
,
Biophys. J.
70
,
97
(
1996
).
17.
T. S.
van Erp
,
D.
Moroni
, and
P. G.
Bolhuis
,
J. Chem. Phys.
118
,
7762
(
2003
).
18.
A. K.
Faradjian
and
R.
Elber
,
J. Chem. Phys.
120
,
10880
(
2004
).
19.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
,
J. Chem. Phys.
124
,
024102
(
2006
).
20.
A.
Warmflash
,
P.
Bhimalapuram
, and
A. R.
Dinner
,
J. Chem. Phys.
127
,
154112
(
2007
).
21.
E.
Vanden-Eijnden
and
M.
Venturoli
,
J. Chem. Phys.
131
,
044120
(
2009
).
22.
A.
Dickson
,
A.
Warmflash
, and
A. R.
Dinner
,
J. Chem. Phys.
131
,
154104
(
2009
).
23.
N.
Guttenberg
,
A. R.
Dinner
, and
J.
Weare
,
J. Chem. Phys.
136
,
234103
(
2012
).
24.
J. M.
Bello-Rivas
and
R.
Elber
,
J. Chem. Phys.
142
,
094102
(
2015
).
25.
A. R.
Dinner
,
J. C.
Mattingly
,
J. O.
Tempkin
,
B. V.
Koten
, and
J.
Weare
,
SIAM Rev.
60
,
909
(
2018
).
26.
C.
Schütte
,
A.
Fischer
,
W.
Huisinga
, and
P.
Deuflhard
,
J. Comput. Phys.
151
,
146
(
1999
).
27.
W. C.
Swope
,
J. W.
Pitera
, and
F.
Suits
,
J. Phys. Chem. B
108
,
6571
(
2004
).
28.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
,
Methods
52
,
99
(
2010
).
29.
M.
Sarich
,
F.
Noé
, and
C.
Schütte
,
Multiscale Model. Simul.
8
,
1154
(
2010
).
30.
F.
Noé
and
S.
Fischer
,
Curr. Opin. Struct. Biol.
18
,
154
(
2008
).
31.
F.
Noé
and
J.-H.
Prinz
, in
An Introduction to Markov State Models and their Application to Long Timescale Molecular Simulation
, Advances in Experimental Medicine and Biology, edited by
G. R.
Bowman
,
V. S.
Pande
, and
F.
Noé
(
Springer
,
2014
), Vol. 797, Chap. 6.
32.
B. G.
Keller
,
S.
Aleksic
, and
L.
Donati
, in
Biomolecular Simulations in Drug Discovery
, edited by
F. L.
Gervasio
and
V.
Spiwok
(
Wiley-VCH
,
2019
), Chap. 4.
33.
M.
Weber
, “
Meshless methods in conformation dynamics
,” Ph.D. thesis,
Freie Universität Berlin
,
2006
.
34.
F.
Noé
and
F.
Nüske
,
Multiscale Model. Simul.
11
,
635
(
2013
).
35.
T.
Eisner
,
B.
Farkas
,
M.
Haase
, and
R.
Nagel
,
Operator Theoretic Aspects of Ergodic Theory
(
Springer
,
2015
), Vol. 272.
36.
S.
Klus
,
F.
Nüske
,
P.
Koltai
,
H.
Wu
,
I.
Kevrekidis
,
C.
Schütte
, and
F.
Noé
,
J. Nonlinear Sci.
28
,
985
(
2018
).
37.
P.
Billingsley
,
Probability and Measure
(
John Wiley & Sons
,
2008
).
38.
G. R.
Bowman
,
K. A.
Beauchamp
,
G.
Boxer
, and
V. S.
Pande
,
J. Chem. Phys.
131
,
124101
(
2009
).
39.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
40.
P.
Deuflhard
,
W.
Huisinga
,
A.
Fischer
, and
C.
Schütte
,
Linear Algebra Appl.
315
,
39
(
2000
).
41.
S.
Röblitz
and
M.
Weber
,
Adv. Data Anal. Classif.
7
,
147
(
2013
).
42.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
(
2009
).
43.
C. R.
Schwantes
and
V. S.
Pande
,
J. Chem. Theory Comput.
9
,
2000
(
2013
).
44.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
,
J. Chem. Phys.
139
,
015102
(
2013
).
45.
C. R.
Schwantes
,
R. T.
McGibbon
, and
V. S.
Pande
,
J. Chem. Phys.
141
,
090901
(
2014
).
46.
C.
Schütte
and
M.
Sarich
,
Eur. Phys. J.: Spec. Top.
224
,
2445
(
2015
).
47.
D.
Shukla
,
C. X.
Hernández
,
J. K.
Weber
, and
V. S.
Pande
,
Acc. Chem. Res.
48
,
414
(
2015
).
48.
G.
Berezovska
,
D.
Prada-Gracia
, and
F.
Rao
,
J. Chem. Phys.
139
,
035102
(
2013
).
49.
F. K.
Sheong
,
D.-A.
Silva
,
L.
Meng
,
Y.
Zhao
, and
X.
Huang
,
J. Chem. Theory Comput.
11
,
17
(
2014
).
50.
Y.
Li
and
Z.
Dong
,
J. Chem. Inf. Model.
56
,
1205
(
2016
).
51.
B. E.
Husic
and
V. S.
Pande
,
J. Chem. Theory Comput.
13
,
963
(
2017
).
52.
B. E.
Husic
,
K. A.
McKiernan
,
H. K.
Wayment-Steele
,
M. M.
Sultan
, and
V. S.
Pande
,
J. Chem. Theory Comput.
14
,
1071
(
2018
).
53.
J.-H.
Prinz
,
J. D.
Chodera
, and
F.
Noé
,
Phys. Rev. X
4
,
011020
(
2014
).
54.
A.
Mardt
,
L.
Pasquali
,
H.
Wu
, and
F.
Noé
,
Nat. Commun.
9
,
5
(
2018
).
55.
H.
Wu
and
F.
Noé
, preprint arXiv:1707.04659 (
2017
).
56.
W.
Wang
,
S.
Cao
,
L.
Zhu
, and
X.
Huang
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1343
(
2018
).
57.
B. E.
Husic
and
V. S.
Pande
,
J. Am. Chem. Soc.
140
,
2386
(
2018
).
58.
M.
Steinbach
,
L.
Ertöz
, and
V.
Kumar
,
New Directions in Statistical Physics
(
Springer
,
2004
), pp.
273
309
.
59.
H.-P.
Kriegel
,
P.
Kröger
, and
A.
Zimek
,
ACM Trans. Knowl. Discovery Data
3
,
1
(
2009
).
60.
M. K.
Scherer
,
B.
Trendelkamp-Schroer
,
F.
Paul
,
G.
Pérez-Hernández
,
M.
Hoffmann
,
N.
Plattner
,
C.
Wehmeyer
,
J.-H.
Prinz
, and
F.
Noé
,
J. Chem. Theory Comput.
11
,
5525
(
2015
).
61.
L.
Molgedey
and
H. G.
Schuster
,
Phys. Rev. Lett.
72
,
3634
(
1994
).
62.
H.
Takano
and
S.
Miyashita
,
J. Phys. Soc. Jpn.
64
,
3688
(
1995
).
63.
H.
Hirao
,
S.
Koseki
, and
H.
Takano
,
J. Phys. Soc. Jpn.
66
,
3399
(
1997
).
64.
C.
Schütte
,
F.
Noé
,
J.
Lu
,
M.
Sarich
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
134
,
204105
(
2011
).
65.
D.
Giannakis
,
J.
Slawinska
, and
Z.
Zhao
,
Feature Extraction: Modern Questions and Challenges
(
2015
), pp.
103
115
.
66.
D.
Giannakis
, “
Data-driven spectral decomposition and forecasting of ergodic dynamical systems
,”
Appl. Comput. Harmonic Anal.
(in press).
67.
M. O.
Williams
,
I. G.
Kevrekidis
, and
C. W.
Rowley
,
J. Nonlinear Sci.
25
,
1307
(
2015
).
68.
L.
Boninsegna
,
G.
Gobbo
,
F.
Noé
, and
C.
Clementi
,
J. Chem. Theory Comput.
11
,
5947
(
2015
).
69.
F.
Vitalini
,
F.
Noé
, and
B.
Keller
,
J. Chem. Theory Comput.
11
,
3992
(
2015
).
70.
F.
Nüske
,
B. G.
Keller
,
G.
Pérez-Hernández
,
A. S.
Mey
, and
F.
Noé
,
J. Chem. Theory Comput.
10
,
1739
(
2014
).
71.
F.
Nüske
,
R.
Schneider
,
F.
Vitalini
, and
F.
Noé
,
J. Chem. Phys.
144
,
054105
(
2016
).
72.
P.
Del Moral
,
Feynman-Kac Formulae
(
Springer
,
2004
).
73.
I.
Karatzas
and
S.
Shreve
,
Brownian Motion and Stochastic Calculus
(
Springer Science & Business Media
,
2012
), Vol. 113.
74.
R.
Du
,
V. S.
Pande
,
A. Y.
Grosberg
,
T.
Tanaka
, and
E. S.
Shakhnovich
,
J. Chem. Phys.
108
,
334
(
1998
).
75.
P. G.
Bolhuis
,
C.
Dellago
, and
D.
Chandler
,
Proc. Natl. Acad. Sci. U. S. A.
97
,
5877
(
2000
).
76.
P.
Metzner
,
C.
Schütte
, and
E.
Vanden-Eijnden
,
Multiscale Model. Simul.
7
,
1192
(
2009
).
77.
K.
Yosida
,
Functional Analysis
(
Springer-Verlag
,
New York, Berlin
,
1971
).
78.
M.
Lapelosa
and
C. F.
Abrams
,
Comput. Phys. Commun.
184
,
2310
(
2013
).
79.
R.
Lai
and
J.
Lu
,
Multiscale Model. Simul.
16
,
710
(
2018
).
80.
Y.
Khoo
,
J.
Lu
, and
L.
Ying
,
Res. Math. Sci.
6
,
1
(
2018
).
81.
L.
Evans
,
Partial Differential Equations
(
Orient Longman
,
1998
).
82.
E.
Thiede
, PyEDGAR, https://github.com/ehthiede/PyEDGAR/,
2018
.
83.
H.
Wu
,
F.
Nüske
,
F.
Paul
,
S.
Klus
,
P.
Koltai
, and
F.
Noé
,
J. Chem. Phys.
146
,
154104
(
2017
).
84.
K. K.
Chen
,
J. H.
Tu
, and
C. W.
Rowley
,
J. Nonlinear Sci.
22
,
887
(
2012
).
85.
R. R.
Coifman
and
S.
Lafon
,
Appl. Comput. Harmonic Anal.
21
,
5
(
2006
).
86.
T.
Berry
and
J.
Harlim
,
Appl. Comput. Harmonic Anal.
40
,
68
(
2016
).
87.
A. L.
Ferguson
,
A. Z.
Panagiotopoulos
,
P. G.
Debenedetti
, and
I. G.
Kevrekidis
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
13597
(
2010
).
88.
M. A.
Rohrdanz
,
W.
Zheng
,
M.
Maggioni
, and
C.
Clementi
,
J. Chem. Phys.
134
,
124116
(
2011
).
89.
W.
Zheng
,
B.
Qi
,
M. A.
Rohrdanz
,
A.
Caflisch
,
A. R.
Dinner
, and
C.
Clementi
,
J. Phys. Chem. B
115
,
13065
(
2011
).
90.
A. L.
Ferguson
,
A. Z.
Panagiotopoulos
,
I. G.
Kevrekidis
, and
P. G.
Debenedetti
,
Chem. Phys. Lett.
509
,
1
(
2011
).
91.
A. W.
Long
and
A. L.
Ferguson
,
J. Phys. Chem. B
118
,
4228
(
2014
).
92.
S. B.
Kim
,
C. J.
Dsilva
,
I. G.
Kevrekidis
, and
P. G.
Debenedetti
,
J. Chem. Phys.
142
,
085101
(
2015
).
93.
T.
Berry
,
D.
Giannakis
, and
J.
Harlim
,
Phys. Rev. E
91
,
032915
(
2015
).
94.
K.
Müller
and
L. D.
Brown
,
Theor. Chim. Acta
53
,
75
(
1979
).
95.
B.
Leimkuhler
and
C.
Matthews
,
Appl. Math. Res. Express
2013
,
34
(
2012
).
96.
K. A.
Beauchamp
,
G. R.
Bowman
,
T. J.
Lane
,
L.
Maibaum
,
I. S.
Haque
, and
V. S.
Pande
,
J. Chem. Theory Comput.
7
,
3412
(
2011
).
97.
E.
Suárez
,
J. L.
Adelman
, and
D. M.
Zuckerman
,
J. Chem. Theory Comput.
12
,
3473
(
2016
).
98.
N.
Djurdjevac
,
M.
Sarich
, and
C.
Schütte
,
Multiscale Model. Simul.
10
,
61
(
2012
).
99.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
2001
).
100.
F.
Takens
,
Lect. Notes Math.
898
,
366
(
1981
).
101.
D.
Aeyels
,
SIAM J. Control Optim.
19
,
595
(
1981
).
102.
M. R.
Muldoon
,
D. S.
Broomhead
,
J. P.
Huke
, and
R.
Hegger
,
Dyn. Stab. Syst.
13
,
175
(
1998
).
103.
J.
Stark
,
D.
Broomhead
,
M.
Davies
, and
J.
Huke
,
Nonlinear Anal.: Theory, Methods Appl.
30
,
5303
(
1997
).
104.
T.
Berry
,
J. R.
Cressman
,
Z.
Greguric-Ferencek
, and
T.
Sauer
,
SIAM J. Appl. Dyn. Syst.
12
,
618
(
2013
).
105.
J.
Wang
and
A. L.
Ferguson
,
Phys. Rev. E
93
,
032412
(
2016
).
106.
J.
Wang
and
A. L.
Ferguson
,
J. Phys. Chem. B
122
,
11931
(
2018
).
107.
R.
Fung
,
A. M.
Hanna
,
O.
Vendrell
,
S.
Ramakrishna
,
T.
Seideman
,
R.
Santra
, and
A.
Ourmazd
,
Nature
532
,
471
(
2016
).
108.
E.
Suarez
,
S.
Lettieri
,
M. C.
Zwier
,
C. A.
Stringer
,
S. R.
Subramanian
,
L. T.
Chong
, and
D. M.
Zuckerman
,
J. Chem. Theory Comput.
10
,
2658
(
2014
).
109.
R.
Durrett
,
Probability: Theory and Examples
(
Cambridge University Press
,
2010
).
110.
D. E.
Shaw
,
P.
Maragakis
,
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
,
M. P.
Eastwood
,
J. A.
Bank
,
J. M.
Jumper
,
J. K.
Salmon
,
Y.
Shan
, and
W.
Wriggers
,
Science
330
,
341
(
2010
).
111.
S.
Piana
,
K.
Sarkar
,
K.
Lindorff-Larsen
,
M.
Guo
,
M.
Gruebele
, and
D. E.
Shaw
,
J. Mol. Biol.
405
,
43
(
2011
).
112.
A. W.
Long
and
A. L.
Ferguson
,
Appl. Comput. Harmonic Anal.
47
,
190
(
2019
).

Supplementary Material

You do not currently have access to this content.