The phase diagram of molecular or colloidal systems depends strongly on the range and angular dependence of the interactions between the constituent particles. For instance, it is well known that the critical density of particles with “patchy” interactions shifts to lower values as the number of patches is decreased [see Bianchi et al. Phys. Rev. Lett. 97, 168301 (2006)]. Here, we present simulations that show that the phase behavior of patchy particles is even more interesting than had been appreciated. In particular, we find that, upon cooling below the critical point, the width of the liquid-vapor coexistence region of a system of particles with tetrahedrally arranged patches first increases, then decreases, and finally increases again. In other words, this system exhibits a doubly re-entrant liquid-vapor transition. As a consequence, the system exhibits a very large deviation from the law of rectilinear diameter, which assumes that the critical density can be obtained by linear extrapolation of the averages of the densities of the coexisting liquid and vapor phases. We argue that the unusual behavior of this system has the same origin as the density maximum in liquid water and is not captured by the Wertheim theory. The Wertheim theory also cannot account for our observation that the phase diagram of particles with three patches depends strongly on the geometrical distribution of the patches and on the degree to which their position on the particle surface is rigidly constrained. However, the phase diagram is less sensitive to small angular spreads in the patch locations. We argue that the phase behavior reported in this paper should be observable in experiments on patchy colloids and may be relevant for the liquid-liquid equilibrium in solutions of properly functionalized dendrimers.

1.
Z.
Zhang
and
S.
Glotzer
, “
Self-assembly of patchy particles
,”
Nano Lett.
4
,
1407
1413
(
2004
).
2.
I. C.
Pons-Siepermann
and
S. C.
Glotzer
, “
Design of patchy particles using quaternary self-assembled monolayers
,”
ACS Nano
6
(
5
),
3919
3924
(
2012
).
3.
I. C.
Pons-Siepermann
and
S. C.
Glotzer
, “
Design of patchy particles using ternary self-assembled monolayers
,”
Soft Matter
8
(
23
),
6226
6231
(
2012
).
4.
P. I. C.
Teixeira
and
J. M.
Tavares
, “
Phase behaviour of pure and mixed patchy colloids: Theory and simulation
,”
Curr. Opin. Colloidal Interface Sci.
30
,
16
24
(
2017
).
5.
J.
Russo
,
J. M.
Tavares
,
P. I. C.
Teixeira
,
M. T.
da Gama
, and
F.
Sciortino
, “
Re-entrant phase behaviour of network fluids: A patchy particle model with temperature-dependent valence
,”
J. Chem. Phys.
135
(
3
),
034501
(
2011
).
6.
J.
Russo
,
J. M.
Tavares
,
P. I. C.
Teixeira
,
M. T.
da Gama
, and
F.
Sciortino
, “
Reentrant phase diagram of network fluids
,”
Phys. Rev. Lett.
106
(
8
),
085703
(
2011
).
7.
A.
Oleksy
and
P. I. C.
Teixeira
, “
Liquid-vapor interfaces of patchy colloids
,”
Phys. Rev. E
91
(
1
),
012301
(
2015
).
8.
D. d. l.
Heras
,
J. M.
Tavares
, and
M. M. T.
da Gama
, “
Phase diagrams of binary mixtures of patchy colloids with distinct numbers and types of patches: The empty fluid regime
,”
J. Chem. Phys.
134
(
10
),
104904
(
2011
).
9.
F.
Seiferling
,
D.
de las Heras
, and
M. M.
Telo da Gama
, “
Percolation in binary and ternary mixtures of patchy colloids
,”
J. Chem. Phys.
145
(
7
),
074903
(
2016
).
10.
E.
Bianchi
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Theoretical and numerical study of the phase diagram of patchy colloids: Ordered and disordered patch arrangements
,”
J. Chem. Phys.
128
(
14
),
144504
(
2008
).
11.
D.
de las Heras
,
J. M.
Tavares
, and
M. M.
Telo da Gama
, “
Phase diagrams of binary mixtures of patchy colloids with distinct numbers of patches: The network fluid regime
,”
Soft Matter
7
,
5615
5626
(
2011
).
12.
E.
Duguet
,
C.
Hubert
,
C.
Chomette
,
A.
Perro
, and
S.
Ravaine
, “
Patchy colloidal particles for programmed self-assembly
,”
C. R. Chim.
19
,
173
182
(
2016
).
13.
Z.
Gong
,
G.-R. Y.
Theodore Hueckel
, and
S.
Sacanna
, “
Patchy particles made by colloidal fusion
,”
Nature
550
,
234
238
(
2017
).
14.
G.
Doppelbauer
,
E.
Bianchi
, and
G.
Kahl
, “
Self-assembly scenarios of patchy colloidal particles in two dimensions
,”
J. Phys.: Condens. Matter
22
(
10
),
104105
(
2010
).
15.
F.
Romano
and
F.
Sciortino
, “
Colloidal self-assembly: Patchy from the bottom up
,”
Nat. Mater.
10
,
171
(
2011
).
16.
F.
Romano
,
E.
Sanz
, and
F.
Sciortino
, “
Crystallization of tetrahedral patchy particles in silico
,”
J. Chem. Phys.
134
(
17
),
174502
(
2011
).
17.
E.
Bianchi
,
G.
Doppelbauer
,
L.
Filion
,
M.
Dijkstra
, and
G.
Kahl
, “
Predicting patchy particle crystals: Variable box shape simulations and evolutionary algorithms
,”
J. Chem. Phys.
136
(
21
),
214102
(
2012
).
18.
Y.
Wang
,
Y.
Wang
,
D. R.
Breed
,
V. N.
Manoharan
,
L.
Feng
,
A. D.
Hollingsworth
,
M.
Weck
, and
D. J.
Pine
, “
Colloids with valence and specific directional bonding
,”
Nature
491
(
7422
),
51
(
2012
).
19.
I.
Coluzza
,
D.
van Oostrum
,
B.
Capone
,
E.
Reimhult
, and
C.
Dellago
, “
Sequence controlled self-knotting colloidal patchy polymers
,”
Phys. Rev. Lett.
110
(
7
),
075501
(
2013
).
20.
J. J.
McManus
,
P.
Charbonneau
,
E.
Zaccarelli
, and
N.
Asherie
, “
The physics of protein self-assembly
,”
Curr. Opin. Colloid Interface Sci.
22
,
73
79
(
2016
).
21.
D. J.
Audus
,
F. W.
Starr
, and
J. F.
Douglas
, “
Valence, loop formation and universality in self-assembling patchy particles
,”
Soft Matter
14
(
9
),
1622
1630
(
2018
).
22.
J. M.
Tavares
,
C.
Dias
,
N.
Araújo
, and
M.
Telo da Gama
, “
Dynamics of patchy particles in and out of equilibrium
,”
J. Phys. Chem. B
122
(
13
),
3514
3518
(
2017
).
23.
L.
Rovigatti
,
J.
Russo
, and
F.
Romano
, “
How to simulate patchy particles
,”
Eur. Phys. J. E
41
(
5
),
59
(
2018
).
24.
J. A.
Millan
,
D.
Ortiz
, and
S. C.
Glotzer
, “
Effect of shape on the self-assembly of faceted patchy nanoplates with irregular shape into tiling patterns
,”
Soft Matter
11
(
7
),
1386
1396
(
2015
).
25.
I.
Saika-Voivod
,
F.
Samllenburg
, and
F.
Sciortino
, “
Understanding tetrahedral liquids through patchy colloids
,”
J. Chem. Phys.
139
,
234901
(
2013
).
26.
C.
De Michele
,
S.
Gabrielli
,
P.
Tartaglia
, and
F.
Sciortino
, “
Dynamics in the presence of attractive patchy interactions
,”
J. Phys. Chem. B
110
(
15
),
8064
8079
(
2006
).
27.
E.
Bianchi
,
J.
Largo
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Phase diagram of patchy colloids: Towards empty liquids
,”
Phys. Rev. Lett.
97
,
168301
(
2006
).
28.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. IV. Equilibrium polymerization
,”
J. Stat. Phys.
42
,
477
(
1986
).
29.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. III. Multiple attraction sites
,”
J. Stat. Phys.
42
,
459
(
1986
).
30.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations
,”
J. Stat. Phys.
35
,
35
(
1984
).
31.
M. S.
Wertheim
, “
Fluids with highly directional attractive forces. I. Statistical thermodynamics
,”
J. Stat. Phys.
35
,
19
(
1984
).
32.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
, “
Saft: Equation-of-state solution model for associating fluids
,”
Fluid Phase Equilib.
52
,
31
(
1989
).
33.
J.
Jover
,
A. J.
Haslam
,
A.
Galindo
,
G.
Jackson
, and
E. A.
Muller
, “
Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules
,”
J. Chem. Phys.
137
(
14
),
144505
(
2012
).
34.
J. R.
Espinosa
,
C.
Vega
, and
E.
Sanz
, “
The mold integration method for the calculation of the crystal-fluid interfacial free energy from simulations
,”
J. Chem. Phys.
141
(
13
),
134709
(
2014
).
35.
J. R.
Espinosa
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
, “
On fluid-solid direct coexistence simulations: The pseudo-hard sphere model
,”
J. Chem. Phys.
139
(
14
),
144502
(
2013
).
36.
A.
Ladd
and
L.
Woodcock
, “
Triple-point coexistence properties of the Lennard-Jones system
,”
Chem. Phys. Lett.
51
,
1
,
155
159
,
1977
.
37.
R.
Garcia-Fernandez
,
J. L. F.
Abascal
, and
C.
Vega
, “
The melting point of ice ih for common water models calculated from direct coexistence of the solid-liquid interface
,”
J. Chem. Phys.
124
(
14
),
144506
(
2006
).
38.
N. B.
Wilding
and
K.
Binder
, “
Finite-size scaling for near-critical continuum fluids at constant pressure
,”
Physica A
231
,
439
(
1996
).
39.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
40.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
,
1985
.
41.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
(
1984
).
42.
W. G.
Hoover
, “
Constant-pressure equations of motion
,”
Phys. Rev. A
34
,
2499
2500
(
1986
).
43.
H.
Kamberaj
,
R. J.
Low
, and
M.
Neal
, “
Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules
,”
J. Chem. Phys.
122
(
22
),
224114
(
2005
).
44.
See http://www.collepardolab.org for files needed for running an example simulation of the M=4 p-p case of the MD-Patchy model in LAMMPS.
45.
J. M.
Tavares
,
P. I. C.
Teixeira
, and
M. T.
da Gama
, “
Criticality of colloids with distinct interaction patches: The limits of linear chains, hyperbranched polymers, and dimers
,”
Phys. Rev. E
80
(
2
),
021506
(
2009
).
46.
S.
Ciarella
,
O.
Gang
, and
F.
Sciortino
, “
Toward the observation of a liquid-liquid phase transition in patchy origami tetrahedra: A numerical study
,”
Eur. Phys. J. E
39
(
12
),
131
(
2016
).
47.
N.
Dorsaz
,
L.
Filion
,
F.
Smallenburg
, and
D.
Frenkel
, “
Spiers memorial lecture: Effect of interaction specificity on the phase behaviour of patchy particles
,”
Faraday Discuss.
159
,
9
21
(
2012
).
48.
J. M.
Tavares
and
P. I. C.
Teixeira
, “
Phase diagrams of particles with dissimilar patches: X-junctions and Y-junctions
,”
J. Phys.: Condens. Matter
24
,
284108
(
2012
).
49.
J. M.
Prausnitz
,
R. N.
Lichtenthaler
, and
E. G.
de Azevedo
,
Molecular Thermodynamics of Fluid Phase Equilibria
(
Prentice-Hall
,
White Plains
,
1999
).
50.
P. I. C.
Teixeira
, “
Very low surface tension liquid–vapour interfaces of patchy colloids
,”
Colloids Surf., A
514
,
63
68
(
2017
).
51.
D.
De las Heras
and
M. M. T.
Da Gama
, “
Temperature (de) activated patchy colloidal particles
,”
J. Phys.: Condens. Matter
28
(
24
),
244008
(
2016
).
52.
J.
Slovak
and
I.
Nezbeda
, “
On accuracy of Wertheim’s thermodynamic perturbation theory for primitive models of water
,”
Mol. Phys.
101
,
789
798
(
2003
).
53.
C.
Vega
and
P. A.
Monson
, “
Solid-fluid equilibrium for a molecular model with short ranged directional forces
,”
J. Chem. Phys.
109
,
9938
(
1998
).
54.
G. N. I.
Clark
,
A. J.
Haslam
,
A.
Galindo
, and
G.
Jackson
, “
Developing optimal Wertheim-like models of water for use in statistical associating fluid theory (SAFT) and related approaches
,”
Mol. Phys.
104
(
22-24
),
3561
3581
(
2006
).
55.
D.
Fusco
and
P.
Charbonneau
, “
Crystallization of asymmetric patchy models for globular proteins in solution
,”
Phys. Rev. E
88
(
1
),
012721
(
2013
).
56.
D.
Fusco
and
P.
Charbonneau
, “
Soft matter perspective on protein crystal assembly
,”
Colloids Surf., B
137
,
22
31
(
2016
).
57.
J. M.
Tavares
,
N. G.
Almarza
, and
M. M.
Telo da Gama
, “
Generalization of Wertheim’s theory for the assembly of various types of rings
,”
Soft Matter
11
,
5828
5838
(
2015
).
58.
I.
Nezbeda
,
J.
Kolafa
, and
Y.
Kalyuzhnyi
, “
Primitive model of water II. Theoretical results for the structure and thermodynamic properties
,”
Mol. Phys.
68
,
143
(
1989
).
59.
F.
Romano
,
P.
Tartaglia
, and
F.
Sciortino
, “
Gas–liquid phase coexistence in a tetrahedral patchy particle model
,”
J. Phys.: Condens. Matter
19
(
32
),
322101
(
2007
).
60.
G.
Doppelbauer
,
E. G.
Noya
,
E.
Bianchi
, and
G.
Kahl
, “
Competing ordered structures formed by particles with a regular tetrahedral patch decoration
,”
J. Phys.: Condens. Matter
24
(
28
),
284124
(
2012
).
61.
E. G.
Noya
,
C.
Vega
,
J. P. K.
Doye
, and
A. A.
Louis
, “
The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry
,”
J. Chem. Phys.
132
,
234511
(
2010
).
62.
J. P. K.
Doye
,
A. A.
Louis
,
I.-C.
Lin
,
L. R.
Allen
,
E. G.
Noya
,
A. W.
Wilber
,
H. C.
Kok
, and
R.
Lyus
, “
Controlling crystallization and its absence: Proteins, colloids and patchy models
,”
Phys. Chem. Chem. Phys.
9
,
2197
2205
(
2007
).
You do not currently have access to this content.