The use of relaxation interference in the methyl Transverse Relaxation-Optimized SpectroscopY (TROSY) experiment has opened new avenues for the study of large proteins and protein assemblies in nuclear magnetic resonance. So far, the theoretical description of the methyl-TROSY experiment has been limited to the slow-tumbling approximation, which is correct for large proteins on high-field spectrometers. In a recent paper, favorable relaxation interference was observed in the methyl groups of a small protein at a magnetic field as low as 0.33 T, well outside the slow-tumbling regime. Here, we present a model to describe relaxation interference in methyl groups over a broad range of magnetic fields, not limited to the slow-tumbling regime. We predict that the type of multiple-quantum transition that shows favorable relaxation properties change with the magnetic field. Under the condition of fast methyl-group rotation, methyl-TROSY experiments can be recorded over the entire range of magnetic fields from a fraction of 1 T up to 100 T.

1.
J.
Cavanagh
,
W. J.
Fairbrother
,
A. G.
Palmer
,
M.
Rance
, and
N. J.
Skelton
,
Protein NMR Spectroscopy: Principles and Practice
(
Elsevier Academic Press
,
2007
).
2.
A. G.
Palmer
,
Chem. Rev.
104
,
3623
3640
(
2004
).
3.
A.
Mittermaier
and
L. E.
Kay
,
Science
312
,
224
(
2006
).
4.
C.
Charlier
,
S.
Cousin
, and
F.
Ferrage
,
Chem. Soc. Rev.
45
,
2410
(
2016
).
5.
J.-H.
Ardenkjaer-Larsen
,
G. S.
Boebinger
,
A. A.
Comment
,
S.
Duckett
,
A. S.
Edison
,
F.
Engelke
,
C.
Griesinger
,
R. G.
Griffin
,
C.
Hilty
,
H.
Maeda
,
G.
Parigi
,
T.
Prisner
,
E.
Ravera
,
J.
van Bentum
,
S.
Vega
,
A.
Webb
,
C.
Luchinat
,
H.
Schwalbe
, and
L.
Frydman
,
Angew. Chem., Int. Ed.
54
,
9162
(
2015
).
6.
K.
Pervushin
,
R.
Riek
,
G.
Wider
, and
K.
Wuthrich
,
Proc. Natl. Acad. Sci. U. S. A.
94
,
12366
(
1997
).
7.
H.
Shimizu
,
J. Chem. Phys.
40
,
3357
(
1964
).
8.
M.
Goldman
,
J. Magn. Reson.
60
,
437
(
1984
).
9.
S.
Wimperis
and
G.
Bodenhausen
,
Mol. Phys.
66
,
897
(
1989
).
10.
V.
Tugarinov
,
R.
Muhandiram
,
A.
Ayed
, and
L. E.
Kay
,
J. Am. Chem. Soc.
124
,
10025
(
2002
).
11.
J.
Fiaux
,
E. B.
Bertelsen
,
A. L.
Horwich
, and
K.
Wuthrich
,
Nature
418
,
207
(
2002
).
12.
P. J.
Hajduk
,
D. J.
Augeri
,
J.
Mack
,
R.
Mendoza
,
J.
Yang
,
S. F.
Betz
, and
S. W.
Fesik
,
J. Am. Chem. Soc.
122
,
7898
(
2000
).
13.
K. H.
DuBay
,
G. R.
Bowman
, and
P. L.
Geissler
,
Acc. Chem. Res.
48
,
1098
(
2015
).
14.
K. K.
Frederick
,
M. S.
Marlow
,
K. G.
Valentine
, and
J.
Wand
,
Nature
448
,
325
(
2007
).
15.
L. K.
Nicholson
,
L. E.
Kay
,
D. M.
Baldisseri
,
J.
Arango
,
P. E.
Young
,
A.
Bax
, and
D. A.
Torchia
,
Biochemistry
31
,
5253
(
1992
).
16.
S. F.
Cousin
,
P.
Kaderavek
,
N.
Bolik-Coulon
,
Y.
Gu
,
C.
Charlier
,
L.
Carlier
,
L.
Bruschweiler-Li
,
T.
Marquardsen
,
J.-M.
Tyburn
,
R.
Bruschweiler
, and
F.
Ferrage
,
J. Am. Chem. Soc.
140
,
13456
(
2018
).
17.
G.
Mas
,
J.-Y.
Guan
,
E.
Crublet
,
E.
Colas Debled
,
C.
Moriscot
,
P.
Gans
,
G.
Schoehn
,
P.
Macek
, and
J.
Boisbouvier
,
Sci. Adv.
4
,
eaau4196
(
2018
).
18.
V.
Tugarinov
,
P. M.
Hwang
,
J. E.
Ollerenshaw
, and
L. E.
Kay
,
J. Am. Chem. Soc.
125
,
10420
(
2003
).
19.
D.
Sheppard
,
R.
Sprangers
, and
V.
Tugarinov
,
Prog. Nucl. Magn. Reson. Spectrosc.
56
,
1
(
2010
).
20.
V.
Tugarinov
,
V.
Kanelis
, and
L. E.
Kay
,
Nat. Protoc.
1
,
749
(
2006
).
21.
M. J.
Plevin
and
J.
Boisbouvier
, “
Isotope-labelling of methyl groups for NMR studies of large proteins
,” in
RSC Biomolecular Sciences
(
Royal Society of Chemistry
,
2012
), Chap. I, pp.
1
24
.
22.
G.
Mas
,
E.
Crublet
,
O.
Hamelin
,
P.
Gans
, and
J.
Boisbouvier
,
J. Biomol. NMR
57
,
251
(
2013
).
23.
R.
Rosenzweig
and
L. E.
Kay
,
Annu. Rev. Biochem.
83
,
291
(
2014
).
24.
V.
Tugarinov
,
R.
Sprangers
, and
L. E.
Kay
,
J. Am. Chem. Soc.
129
,
1743
(
2007
).
25.
S. F.
Cousin
,
P.
Kadeřávek
,
B.
Haddou
,
C.
Charlier
,
T.
Marquardsen
,
J.-M.
Tyburn
,
P.-A.
Bovier
,
F.
Engelke
,
W.
Maas
,
G.
Bodenhausen
,
P.
Pelupessy
, and
F.
Ferrage
,
Angew. Chem., Int. Ed.
55
,
9886
(
2016
).
26.
V.
Tugarinov
,
R.
Sprangers
, and
L. E.
Kay
,
J. Am. Chem. Soc.
126
,
4921
(
2004
).
27.
S. F.
Cousin
,
C.
Charlier
,
P.
Kadeřávek
,
T.
Marquardsen
,
J.-M.
Tyburn
,
P.-A.
Bovier
,
S.
Ulzega
,
T.
Speck
,
D.
Wilhelm
,
F.
Engelke
,
W.
Maas
,
D.
Sakellariou
,
G.
Bodenhausen
,
P.
Pelupessy
, and
F.
Ferrage
,
Phys. Chem. Chem. Phys.
18
,
33187
(
2016
).
28.
B.
Blumich
and
K.
Singh
,
Angew. Chem., Int. Ed.
57
,
6996
(
2017
).
29.
Z.
Gan
,
I.
Hung
,
X.
Wang
,
J.
Paulino
,
W.
Gang
,
I. M.
Litvak
,
P. L.
Gor’kov
,
W. W.
Grey
,
P.
Lendi
,
J. L.
Schiano
,
M. D.
Bird
,
I. R.
Dixon
,
J.
Toth
,
G.
Boebinger
, and
T. A.
Cross
,
J. Magn. Reson.
284
,
125
(
2017
).
30.
I. Wolfram Research, Mathematica,
2016
.
31.
C.
Bengs
and
M. H.
Levitt
,
Magn. Reson. Chem.
56
,
374
(
2018
).
32.
I.
Kuprov
,
N.
Wagner-Rundell
, and
P.
Hore
,
J. Magn. Reson.
184
,
196
(
2007
).
33.
J. J.
Helmus
and
C. P.
Jaroniec
,
J. Biomol. NMR
55
,
355
(
2013
).
34.
L. G.
Werbelow
and
D. M.
Grant
,
J. Chem. Phys.
63
,
544
(
1975
).
35.
G. B.
Matson
,
J. Chem. Phys.
65
,
4147
(
1976
).
36.
G. B.
Matson
,
J. Chem. Phys.
67
,
5152
(
1977
).
37.
L. G.
Werbelow
and
D. M.
Grant
, “
Intramolecular dipolar relaxation in multispin systems
,” in
Advances in Magnetic Resonance
, edited by
J.
Waugh
(
Elsevier
,
1977
), Vol. 9, p.
189
.
38.
N.
Muller
,
G.
Bodenhausen
, and
R. R.
Ernst
,
J. Magn. Reson.
75
,
297
(
1987
).
39.
L. E.
Kay
and
T.
Bull
,
J. Magn. Reson.
99
,
615
(
1992
).
40.
J.-N.
Dumez
,
P.
Hakansson
,
S.
Mamone
,
B.
Meier
,
G.
Stevanato
,
J. T.
Hill-Cousins
,
S.
Singha Roy
,
R. C.
Brown
,
G.
Pileio
, and
M. H.
Levitt
,
J. Chem. Phys.
142
,
044506
(
2015
).
41.
M.
Levitt
, personal communication (
02 February 2019
).
42.
A.
Kumar
,
R.
Christy Rani Grace
, and
P. K.
Madhu
,
Prog. Nucl. Magn. Reson.
37
,
191
(
2000
).
43.
J.
Kowalewski
and
L.
Mäler
,
Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications
(
Taylor & Francis
,
2006
).
44.
M. P.
Nicholas
,
E.
Eryilmaz
,
F.
Ferrage
,
D.
Cowburn
, and
R.
Ghose
,
Prog. Nucl. Magn. Reson. Spectrosc.
57
,
111
(
2010
).
45.
A.
Abragam
,
The Principles of Nuclear Magnetism
(
Oxford University Press
,
London
,
1961
).
46.
G.
Lipari
and
A.
Szabo
,
J. Am. Chem. Soc.
104
,
4546
(
1982
).
47.
M. G.
Clore
,
A.
Szabo
,
A.
Bax
,
K. E.
Lewis
,
P. C.
Driscoll
, and
A. M.
Bronenborn
,
J. Am. Chem. Soc.
112
,
4989
(
1990
).
48.
X.
Liao
,
D.
Long
,
D.-W.
Li
,
R.
Bruschweiler
, and
V.
Tugarinov
,
J. Phys. Chem. B
116
,
606
(
2012
).
49.
D.
Frueh
,
Prog. Nucl. Magn. Reson. Spectrosc.
41
,
305
(
2002
).
50.
V.
Tugarinov
,
C.
Scheurer
,
R.
Bruschweiler
, and
L. E.
Kay
,
J. Biomol. NMR
30
,
397
(
2004
).
51.
V.
Tugarinov
and
L. E.
Kay
,
J. Am. Chem. Soc.
129
,
9514
(
2007
).
52.
L. S.
Batchelder
,
C.
Niu
, and
D.
Torchia
,
J. Am. Chem. Soc.
105
,
2228
(
1983
).
53.
P.
Kaderavek
,
L.
Strouk
,
S. F.
Cousin
,
C.
Charlier
,
G.
Bodenhausen
,
T.
Marquardsen
,
J.-M.
Tyburn
,
P.-A.
Bovier
,
F.
Engelke
,
W.
Maas
, and
F.
Ferrage
,
ChemPhysChem
18
,
2772
(
2017
).
54.
C.
Charlier
,
S. N.
Khan
,
T.
Marquardsen
,
P.
Pelupessy
,
V.
Reiss
,
D.
Sakellariou
,
G.
Bodenhausen
,
F.
Engelke
, and
F.
Ferrage
,
J. Am. Chem. Soc.
135
,
18665
(
2013
).

Supplementary Material

You do not currently have access to this content.