Quasiparticle energies of the atoms H–Ne have been computed in the GW approximation in the presence of strong magnetic fields with field strengths varying from 0 to 0.25 atomic units (0.25B0=0.25e1a0258763 T). The GW quasiparticle energies are compared with equation-of-motion ionization-potential (EOM-IP) coupled-cluster singles-and-doubles (CCSD) calculations of the first ionization energies. The best results are obtained with the evGW@PBE0 method, which agrees with the EOM-IP-CCSD model to within about 0.20 eV. Ionization potentials have been calculated for all atoms in the series, representing the first systematic study of ionization potentials for the first-row atoms at field strengths characteristic of magnetic white dwarf stars. Under these conditions, the ionization potentials increase in a near-linear fashion with the field strength, reflecting the linear field dependence of the Landau energy of the ionized electron. The calculated ionization potentials agree well with the best available literature data for He, Li, and Be.

1.
L.
Ferrario
,
D.
de Martino
, and
B. T.
Gänsicke
,
Space Sci. Rev.
191
,
111
(
2015
).
4.
A.
Thirumalai
and
J. S.
Heyl
,
Adv. At. Mol. Opt. Phy.
63
,
323
(
2014
).
5.
M. V.
Ivanov
and
P.
Schmelcher
,
Phys. Rev. A
57
,
3793
(
1998
).
6.
M. V.
Ivanov
and
P.
Schmelcher
,
Phys. Rev. A
61
,
022505
(
2000
).
7.
M. V.
Ivanov
and
P.
Schmelcher
,
J. Phys. B: At. Mol. Opt. Phys.
34
,
2031
(
2001
).
8.
M. V.
Ivanov
and
P.
Schmelcher
,
Eur. Phys. J. D
14
,
279
(
2001
).
9.
W.
Becken
,
P.
Schmelcher
, and
F. K.
Diakonos
,
J. Phys. B: At. Mol. Opt. Phys.
32
,
1557
(
1999
).
10.
W.
Becken
and
P.
Schmelcher
,
J. Phys. B: At. Mol. Opt. Phys.
33
,
545
(
2000
).
11.
W.
Becken
and
P.
Schmelcher
,
Phys. Rev. A
63
,
053412
(
2001
).
12.
O.-A.
Al-Hujaj
and
P.
Schmelcher
,
Phys. Rev. A
70
,
033411
(
2004
).
13.
O.-A.
Al-Hujaj
and
P.
Schmelcher
,
Phys. Rev. A
70
,
023411
(
2004
).
14.
C.
Schimeczek
,
S.
Boblest
,
D.
Meyer
, and
G.
Wunner
,
Phys. Rev. A
88
,
012509
(
2013
).
15.
S.
Boblest
,
C.
Schimeczek
, and
G.
Wunner
,
Phys. Rev. A
89
,
012505
(
2014
).
16.
S.
Stopkowicz
,
J.
Gauss
,
K. K.
Lange
,
E. I.
Tellgren
, and
T.
Helgaker
,
J. Chem. Phys.
143
,
074110
(
2015
).
17.
F.
Hampe
and
S.
Stopkowicz
,
J. Chem. Phys.
146
,
154105
(
2017
).
18.
19.
Y.
Tang
,
L.
Wang
,
X.
Song
,
X.
Wang
,
Z.-C.
Yan
, and
H.
Qiao
,
Phys. Rev. A
87
,
042518
(
2013
).
20.
J. A.
Salas
,
I.
Pelaschier
, and
K.
Varga
,
Phys. Rev. A
92
,
033401
(
2015
).
21.
S.
Doma
,
M. O.
Shaker
,
A. M.
Farag
, and
F. N.
El-Gammal
,
Acta Phys. Pol. A
126
,
700
(
2014
).
22.
S.
Doma
,
M. O.
Shaker
,
A. M.
Farag
, and
F. N.
El-Gammal
,
J. Exp. Theor. Phys.
124
,
1
(
2017
).
23.
A.
Thirumalai
and
J. S.
Heyl
,
Mon. Not. R. Astron. Soc.
407
,
590
(
2010
).
24.
TURBOMOLE Version 7.3, July 2018, a development of University of Karlsruhe (TH) and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007, available from http://www.turbomole.com.
25.
T. J. P.
Irons
,
J.
Zemen
, and
A. M.
Teale
,
J. Chem. Theory Comput.
13
,
3636
(
2017
).
26.
QUEST, A Rapid Development Platform for Quantum Electronic Structure Techniques, 2017, see https://quest.codes/ for more information.
27.
E. I.
Tellgren
(primary author),
T.
Helgaker
,
A.
Soncini
,
K. K.
Lange
,
A. M.
Teale
,
U. E.
Ekström
,
S.
Stopkowicz
,
J. H.
Austad
, and
S.
Sen
, A Quantum-Chemistry Program for Plane-Wave/GTO Hybrid Basis Sets and Finite Magnetic Field Calculations, see londonprogram.org for more information.
28.
E. I.
Tellgren
,
A.
Soncini
, and
T.
Helgaker
,
J. Chem. Phys.
129
,
154114
(
2008
).
29.
M.
Vincke
and
D.
Baye
,
J. Phys. B: At. Mol. Opt. Phys.
21
,
2407
(
1988
).
30.
D.
Baye
and
M.
Vincke
,
J. Phys. B: At. Mol. Opt. Phys.
23
,
2467
(
1990
).
31.
L.
Hedin
,
Nucl. Instrum. Methods Phys. Res. A
308
,
169
(
1991
).
32.
X.
Blase
,
C.
Attaccalite
, and
V.
Olevano
,
Phys. Rev. B
83
,
115103
(
2011
).
33.
M. J.
van Setten
,
F.
Weigend
, and
F.
Evers
,
J. Chem. Theory Comput.
9
,
232
(
2012
).
34.
K.
Krause
,
M. E.
Harding
, and
W.
Klopper
,
Mol. Phys.
113
,
1952
(
2015
).
35.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
101
,
8938
(
1994
).
36.
T. D.
Crawford
and
H. F.
Schaefer
 III
,
Rev. Comp. Chem.
14
,
33
(
2000
).
37.
R. P.
Mattie
, Ph.D. thesis,
University of Florida
,
1995
.
38.
H.
Koch
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
T.
Helgaker
,
J. Chem. Phys.
93
,
3345
(
1990
).
39.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
40.
D. C.
Comeau
and
R. J.
Bartlett
,
Chem. Phys. Lett.
207
,
414
(
1993
).
41.
B. P.
Prascher
,
D. E.
Woon
,
K. A.
Peterson
,
T. H.
Dunning
, Jr.
, and
A. K.
Wilson
,
Theor. Chem. Acc.
128
,
69
(
2011
).
42.
K. A.
Peterson
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
117
,
10548
(
2002
).
43.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
2975
(
1994
).
44.
C.
Hättig
,
Phys. Chem. Chem. Phys.
7
,
59
(
2005
).
45.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
46.
M.
Ernzerhof
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
5029
(
1999
).
47.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
48.
W.
Klopper
,
R. A.
Bachorz
,
D. P.
Tew
, and
C.
Hättig
,
Phys. Rev. A
81
,
022503
(
2010
).
49.
R. H.
Garstang
,
Rep. Prog. Phys.
40
,
105
(
1977
).
50.
J.-J.
Zhao
,
X.-F.
Wang
, and
H.-X.
Qiao
,
Chin. Phys. B
19
,
113102
(
2010
).
51.
X.-F.
Wang
and
H.-X.
Qiao
,
Few-Body Syst.
53
,
453
(
2012
).

Supplementary Material

You do not currently have access to this content.