Recently, the correlation theory of the chemical bond was developed, which applies concepts of quantum information theory for the characterization of chemical bonds, based on the multiorbital correlations within the molecule. Here, for the first time, we extend the use of this mathematical toolbox for the description of electron-deficient bonds. We start by verifying the theory on the textbook example of a molecule with three-center two-electron bonds, namely, diborane(6). We then show that the correlation theory of the chemical bond is able to properly describe the bonding situation in more exotic molecules which have been synthesized and characterized only recently, in particular, the diborane molecule with four hydrogen atoms [diborane(4)] and a neutral zerovalent s-block beryllium complex, whose surprising stability was attributed to a strong three-center two-electron π bond stretching across the C–Be–C core. Our approach is of high importance especially in the light of a constant chase after novel compounds with extraordinary properties where the bonding is expected to be unusual.

1.
Ö.
Legeza
and
J.
Sólyom
,
Phys. Rev. B
68
,
195116
(
2003
).
2.
Ö.
Legeza
and
J.
Sólyom
,
Phys. Rev. B
70
,
205118
(
2004
).
3.
Z.
Huang
and
S.
Kais
,
Chem. Phys. Lett.
413
,
1
(
2005
).
4.
J.
Rissler
,
R. M.
Noack
, and
S. R.
White
,
Chem. Phys.
323
,
519
(
2006
).
5.
J.
Pipek
and
I.
Nagy
,
Phys. Rev. A
79
,
052501
(
2009
).
6.
G.
Barcza
,
Ö.
Legeza
,
K. H.
Marti
, and
M.
Reiher
,
Phys. Rev. A
83
,
012508
(
2011
).
7.
L. K.
McKemmish
,
R. H.
McKenzie
,
N. S.
Hush
, and
J. R.
Reimers
,
J. Chem. Phys.
135
,
244110
(
2011
).
8.
K.
Boguslawski
,
K. H.
Marti
,
O.
Legeza
, and
M.
Reiher
,
J. Chem. Theory Comput.
8
,
1970
(
2012
).
9.
K.
Boguslawski
,
P.
Tecmer
,
Ö.
Legeza
, and
M.
Reiher
,
J. Phys. Chem. Lett.
3
,
3129
(
2012
).
10.
K.
Boguslawski
,
P.
Tecmer
,
G.
Barcza
,
Ö.
Legeza
, and
M.
Reiher
,
J. Chem. Theory Comput.
9
,
2959
(
2013
).
11.
Y.
Kurashige
,
G. K.-L.
Chan
, and
T.
Yanai
,
Nat. Chem.
5
,
660
(
2013
).
12.
E.
Fertitta
,
B.
Paulus
,
G.
Barcza
, and
Ö.
Legeza
,
Phys. Rev. B
90
,
245129
(
2014
).
13.
C.
Duperrouzel
,
P.
Tecmer
,
K.
Boguslawski
,
G.
Barcza
,
Ö.
Legeza
, and
P. W.
Ayers
,
Chem. Phys. Lett.
621
,
160
(
2015
).
14.
V.
Murg
,
F.
Verstraete
,
R.
Schneider
,
P. R.
Nagy
, and
Ö.
Legeza
,
J. Chem. Theory Comput.
11
,
1027
(
2015
).
15.
S.
Knecht
,
Ö.
Legeza
, and
M.
Reiher
,
J. Chem. Phys.
140
,
041101
(
2014
).
16.
K.
Boguslawski
and
P.
Tecmer
,
Int. J. Quantum Chem.
115
,
1289
(
2015
).
17.
S.
Szalay
,
M.
Pfeffer
,
V.
Murg
,
G.
Barcza
,
F.
Verstraete
,
R.
Schneider
, and
Ö.
Legeza
,
Int. J. Quantum Chem.
115
,
1342
(
2015
).
18.
L.
Freitag
,
S.
Knecht
,
S. F.
Keller
,
M. G.
Delcey
,
F.
Aquilante
,
T.
Bondo Pedersen
,
R.
Lindh
,
M.
Reiher
, and
L.
Gonzalez
,
Phys. Chem. Chem. Phys.
17
,
14383
(
2015
).
19.
Y.
Zhao
,
K.
Boguslawski
,
P.
Tecmer
,
C.
Duperrouzel
,
G.
Barcza
,
Ö.
Legeza
, and
P. W.
Ayers
,
Theor. Chem. Acc.
134
,
120
(
2015
).
20.
T.
Szilvási
,
G.
Barcza
, and
Ö.
Legeza
, e-print arXiv:1509.04241 (
2015
).
21.
M.
Molina-Espíritu
,
R. O.
Esquivel
,
S.
López-Rosa
, and
J. S.
Dehesa
,
J. Chem. Theory Comput.
11
,
5144
(
2015
).
22.
C.
Krumnow
,
L.
Veis
,
O.
Legeza
, and
J.
Eisert
,
Phys. Rev. Lett.
117
,
210402
(
2016
).
23.
C. J.
Stein
and
M.
Reiher
,
J. Chem. Theory Comput.
12
,
1760
(
2016
).
24.
C.
Stein
and
M.
Reiher
,
Chimia
71
,
170
(
2017
).
25.
A.
Kovyrshin
and
M.
Reiher
,
J. Chem. Phys.
147
,
214111
(
2017
).
26.
S.
Szalay
,
G.
Barcza
,
T.
Szilvási
,
L.
Veis
, and
Ö.
Legeza
,
Sci. Rep.
7
,
2237
(
2017
).
27.
C.
Stemmle
,
B.
Paulus
, and
Ö.
Legeza
,
Phys. Rev. A
97
,
022505
(
2018
).
28.
Y.
Kurashige
and
T.
Yanai
,
J. Chem. Phys.
130
,
234114
(
2009
).
29.
V.
Murg
,
F.
Verstraete
,
O.
Legeza
, and
R. M.
Noack
,
Phys. Rev. B
82
,
205105
(
2010
).
30.
N.
Nakatani
and
G. K.-L.
Chan
,
J. Chem. Phys.
138
,
134113
(
2013
).
31.
G. K.-L.
Chan
,
A.
Kesselman
,
N.
Nakatani
,
Z.
Li
, and
S. R.
White
,
J. Chem. Phys.
145
,
014102
(
2016
).
32.
S.
Keller
,
M.
Dolfi
,
M.
Troyer
, and
M.
Reiher
,
J. Chem. Phys.
143
,
244118
(
2015
).
33.
S.
Wouters
and
D.
Van Neck
,
Eur. Phys. J. D
68
,
272
(
2014
).
34.
K.
Gunst
,
F.
Verstraete
,
S.
Wouters
,
Ö.
Legeza
, and
D. V.
Neck
,
J. Chem. Theory Comput.
14
,
2026
(
2018
).
35.
36.
S. R.
White
,
Phys. Rev. B
48
,
10345
(
1993
).
37.
38.
F. M.
Faulstich
,
M.
Máté
,
A.
Laestadius
,
M. A.
Csirik
,
L.
Veis
,
A.
Antalik
,
J.
Brabec
,
R.
Schneider
,
J.
Pittner
,
S.
Kvaal
, and
Ö.
Legeza
,
J. Chem. Theory Comput.
15
,
2206
(
2019
).
39.

The number in parentheses denotes the number of hydrogen atoms.

40.
S.-L.
Chou
,
J.-I.
Lo
,
Y.-C.
Peng
,
M.-Y.
Lin
,
H.-C.
Lu
,
B.-M.
Cheng
, and
J. F.
Ogilvie
,
Chem. Sci.
6
,
6872
(
2015
).
41.
M.
Arrowsmith
,
H.
Braunschweig
,
M. A.
Celik
,
T.
Dellermann
,
R. D.
Dewhurst
,
W. C.
Ewing
,
K.
Hammond
,
T.
Kramer
,
I.
Krummenacher
,
J.
Mies
,
K.
Radacki
, and
J. K.
Schuster
,
Nat. Chem.
8
,
890
(
2016
).
42.
J.
Brabec
,
J.
Lang
,
M.
Saitow
,
J.
Pittner
,
F.
Neese
, and
O.
Demel
,
J. Chem. Theory Comput.
14
,
1370
(
2018
).
43.
H. C.
Longuet-Higgins
,
J. Chem. Soc.
1946
,
139
.
44.
H. C.
Longuet-Higgins
and
R. P.
Bell
,
J. Chem. Soc.
1943
,
250
.
45.
W. H.
Eberhardt
,
B.
Crawford
, and
W. N.
Lipscomb
,
J. Chem. Phys.
22
,
989
(
1954
).
46.
K.
Lammertsma
and
T.
Ohwada
,
J. Am. Chem. Soc.
118
,
7247
(
1996
).
47.
W. N.
Lipscomb
,
Acc. Chem. Res.
6
,
257
(
1973
).
48.
E. C.
Neeve
,
S. J.
Geier
,
I. A. I.
Mkhalid
,
S. A.
Westcott
, and
T. B.
Marder
,
Chem. Rev.
116
,
9091
(
2016
).
49.
M. A.
Vincent
and
H. F.
Schaefer
,
J. Am. Chem. Soc.
103
,
5677
(
1981
).
50.
R. R.
Mohr
and
W. N.
Lipscomb
,
Inorg. Chem.
25
,
1053
(
1986
).
51.
L. A.
Curtiss
and
J. A.
Pople
,
J. Chem. Phys.
90
,
4314
(
1989
).
52.
L. A.
Curtiss
and
J. A.
Pople
,
J. Chem. Phys.
91
,
5118
(
1989
).
53.
I.
Demachy
and
F.
Volatron
,
J. Phys. Chem.
98
,
10728
(
1994
).
54.
I.
Alkorta
,
I.
Soteras
,
J.
Elguero
, and
J. E. D.
Bene
,
Phys. Chem. Chem. Phys.
13
,
14026
(
2011
).
57.
N. A.
Giffin
and
J. D.
Masuda
,
Coord. Chem. Rev.
255
,
1342
(
2011
).
58.
M.
Niemeyer
and
P. P.
Power
,
Inorg. Chem.
36
,
4688
(
1997
).
59.
D.
Naglav
,
A.
Neumann
,
D.
Bläser
,
C.
Wölper
,
R.
Haack
,
G.
Jansen
, and
S.
Schulz
,
Chem. Commun.
51
,
3889
(
2015
).
60.
T.
Arnold
,
H.
Braunschweig
,
W. C.
Ewing
,
T.
Kramer
,
J.
Mies
, and
J. K.
Schuster
,
Chem. Commun.
51
,
737
(
2015
).
61.
H.-W.
Lerner
,
S.
Scholz
,
M.
Bolte
,
N.
Wiberg
,
H.
Nöth
, and
I.
Krossing
,
Eur. J. Inorg. Chem.
2003
,
666
.
62.
K. C.
Mondal
,
H. W.
Roesky
,
M. C.
Schwarzer
,
G.
Frenking
,
B.
Niepötter
,
H.
Wolf
,
R.
Herbst-Irmer
, and
D.
Stalke
,
Angew. Chem., Int. Ed.
52
,
2963
(
2013
).
63.
Y.
Li
,
K. C.
Mondal
,
H. W.
Roesky
,
H.
Zhu
,
P.
Stollberg
,
R.
Herbst-Irmer
,
D.
Stalke
, and
D. M.
Andrada
,
J. Am. Chem. Soc.
135
,
12422
(
2013
).
64.
65.
M.
Ohya
and
D.
Petz
,
Quantum Entropy and Its Use
, 1st ed. (
Springer-Verlag
,
1993
).
66.
H.
Araki
and
H.
Moriya
,
Rev. Math. Phys.
15
,
93
(
2003
).
67.
M. M.
Wilde
,
Quantum Information Theory
(
Cambridge University Press
,
2013
).
68.
R.
Horodecki
,
P.
Horodecki
,
M.
Horodecki
, and
K.
Horodecki
,
Rev. Mod. Phys.
81
,
865
(
2009
).
69.
E.
Schrödinger
,
Math. Proc. Cambridge Philos. Soc.
32
,
446
(
1936
).
70.
L. P.
Hughston
,
R.
Jozsa
, and
W. K.
Wootters
,
Phys. Lett. A
183
,
14
(
1993
).
71.
B. A.
Davey
and
H. A.
Priestley
,
Introduction to Lattices and Order
, 2nd ed. (
Cambridge University Press
,
2002
).
72.
S.
Szalay
and
Z.
Kökényesi
,
Phys. Rev. A
86
,
032341
(
2012
).
73.
S.
Szalay
,
J. Phys. A: Math. Theor.
51
,
485302
(
2018
).
74.
G.
Adesso
,
T. R.
Bromley
, and
M.
Cianciaruso
,
J. Phys. A: Math. Theor.
49
,
473001
(
2016
).
75.
Ö.
Legeza
and
J.
Sólyom
,
Phys. Rev. Lett.
96
,
116401
(
2006
).
76.
R. F.
Nalewajski
,
J. Phys. Chem. A
104
,
11940
(
2000
).
77.
M.
Mottet
,
P.
Tecmer
,
K.
Boguslawski
,
Ö.
Legeza
, and
M.
Reiher
,
Phys. Chem. Chem. Phys.
16
,
8872
(
2014
).
78.
R. F.
Nalewajski
and
E.
Switka
,
Phys. Chem. Chem. Phys.
4
,
4952
(
2004
).
79.
G.
Barcza
,
R. M.
Noack
,
J.
Sólyom
, and
Ö.
Legeza
,
Phys. Rev. B
92
,
125140
(
2015
).
80.
G.
Lindblad
,
Commun. Math. Phys.
33
,
305
(
1973
).
81.
82.
Ö.
Legeza
,
F.
Gebhard
, and
J.
Rissler
,
Phys. Rev. B
74
,
195112
(
2006
).
83.
F.
Herbut
,
J. Phys. A: Math. Gen.
37
,
3535
(
2004
).
84.
K.
Modi
,
T.
Paterek
,
W.
Son
,
V.
Vedral
, and
M.
Williamson
,
Phys. Rev. Lett.
104
,
080501
(
2010
).
85.
C. H.
Bennett
,
H. J.
Bernstein
,
S.
Popescu
, and
B.
Schumacher
,
Phys. Rev. A
53
,
2046
(
1996
).
86.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
, 1st ed. (
Cambridge University Press
,
2000
).
87.
E.
Schmidt
,
Math. Ann.
63
,
433
(
1907
).
88.
J.
Pipek
and
P. G.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
89.
90.
I.
Mayer
,
J. Comput. Chem.
28
,
204
(
2007
).
91.
I.
Mayer
,
Bond Orders and Energy Components: Extracting Chemical Information From Molecular Wave Functions
(
Taylor & Francis
,
2016
).
92.
M.
Kállay
,
Z.
Rolik
,
J.
Csontos
,
I.
Ladjánszki
,
L.
Szegedy
,
B.
Ladóczki
,
G.
Samu
,
K.
Petrov
,
M.
Farkas
,
P.
Nagy
,
D.
Mester
, and
B.
Hégely
, MRCC, a quantum chemical program suite, version 2016-07-15,
2016
, see https://www.mrcc.hu/.
93.
Z.
Rolik
,
L.
Szegedy
,
I.
Ladjánszki
,
B.
Ladóczki
, and
M.
Kállay
,
J. Chem. Phys.
139
,
094105
(
2013
).
94.
D.
Mester
,
J.
Csontos
, and
M.
Kállay
,
Theor. Chem. Acc.
134
,
74
(
2015
).
95.
H. J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, molpro, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
96.
Ö.
Legeza
,
L.
Veis
, and
T.
Mosoni
, QC-DMRG-Budapest, a program for quantum chemical DMRG calculations.
97.
J.
Chalupsky
, “
Charmol: Program for molecular graphics
,” https://sourceforge.net/projects/charmol, accessed 09 September 2018.
98.
Ö.
Legeza
,
J.
Röder
, and
B. A.
Hess
,
Phys. Rev. B
67
,
125114
(
2003
).
99.
T. J.
Osborne
and
F.
Verstraete
,
Phys. Rev. Lett.
96
,
220503
(
2006
).
100.
V.
Coffman
,
J.
Kundu
, and
W. K.
Wootters
,
Phys. Rev. A
61
,
052306
(
2000
).
101.
A.
Krapp
,
K. K.
Pandey
, and
G.
Frenking
,
J. Am. Chem. Soc.
129
,
7596
(
2007
).
You do not currently have access to this content.