It is well-known that the kinetic energy density (KED) functional is the most difficult to approximate in density functional theory (DFT), yet to take full advantage of DFT with its density-based descriptive capability of molecular properties, an accurate account of KED is a must. To have a better idea of how an approximate KED formula behaves and where we should focus in the future development of better approximate KEDs, in this work we propose to employ the Pauli energy to assess their quality. We tested the performance of a total of 22 approximate semilocal noninteracting KED functionals from the literature for 18 neutral atoms and 20 small molecules. We found that generalized gradient approximation formulas of the KED functional can often reasonably accurately predict the total kinetic energy value for atoms and molecules but failed miserably to forecast the integrated values for Pauli energy related properties. The reason behind this is that presently available approximate KED functionals are unable to accurately account for the kinetic energy distribution in the medium range away from nuclei, where the Pauli energy plays a crucial role. Our results strongly suggest that the key information missing in approximate KED functionals comes from the medium regions, not nuclear cusps nor asymptotic areas, and the Pauli energy is a reliable measure of the quality of approximate KED functionals. Future efforts in developing better KED approximations should be invested in the regions of molecules where chemical bonds are formed in order to accurately account for the Pauli energy.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
R. G.
Parr
and
W.
Yang
,
Density Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford, UK
,
1989
).
4.
5.
A.
Savin
,
Recent Developments of Modern Density Functional Theory
(
Elsevier
,
Amsterdam
,
1996
), pp.
327
357
.
6.
G. E.
Scuseria
and
V. N.
Staroverov
, “
Progress in the development of exchange-correlation functionals
,” in
Theory and Applications of Computational Chemistry: The First Forty Years
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
2005
), Chap. 24.
7.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Science
321
,
792
(
2008
).
8.
L.-W.
Wang
and
M. P.
Teter
,
Phys. Rev. B
45
,
13196
13220
(
1992
).
9.
S.
Śmiga
,
E.
Fabiano
,
L. A.
Constantin
, and
F.
Della Sala
,
J. Chem. Phys.
146
,
064105
(
2017
).
10.
S. B.
Trickey
,
V. V.
Karasiev
, and
R. S.
Jones
,
Int. J. Quantum Chem.
109
,
2943
(
2009
).
11.
S. B.
Liu
and
P. W.
Ayers
,
Phys. Rev. A
70
,
022501
(
2004
).
12.
13.
Á.
Nagy
and
N. H.
March
,
Int. J. Quantum Chem.
39
,
615
(
1991
).
14.
Y. A.
Wang
,
N.
Govind
, and
E. A.
Carter
,
Phys. Rev. B
58
,
13465
(
1998
).
15.
J.-D.
Chai
and
J. D.
Weeks
,
Phys. Rev. B
75
,
205122
(
2007
).
16.
J.
Xia
,
C.
Huang
,
I.
Shin
, and
E. A.
Carter
,
J. Chem. Phys.
136
,
084102
(
2012
).
17.
D. I.
Palade
,
Phys. Rev. B
98
,
245401
(
2018
).
18.
D.
García-Aldea
and
J. E.
Alvarellos
,
J. Chem. Phys.
127
,
144109
(
2007
).
19.
20.
E. X.
Salazar
,
P. F.
Guarderas
,
E. V.
Ludeña
,
M. H.
Cornejo
, and
V. V.
Karasiev
,
Int. J. Quantum Chem.
116
,
1313
(
2016
).
21.
S.
Laricchia
,
E.
Fabiano
,
L. A.
Constantin
, and
F.
Della Sala
,
J. Chem. Theory Comput.
7
,
2439
(
2011
).
22.
J.
Nafziger
,
K.
Jiang
, and
A.
Wasserman
,
J. Chem. Theory Comput.
13
,
577
(
2017
).
23.
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Theory Comput.
13
,
4228
(
2017
).
24.
L. H.
Thomas
,
Math. Proc. Cambridge Philos. Soc.
23
,
542
(
1927
).
25.
E.
Fermi
,
Rend. Accad. Naz. Lincei
6
,
602
607
(
1927
).
26.
D. J.
Lacks
and
R. G.
Gordon
,
J. Chem. Phys.
100
,
4446
(
1994
).
27.
D.
García-Aldea
and
J. E.
Alvarellos
,
J. Chem. Phys.
129
,
074103
(
2008
).
28.
D.
García-Aldea
and
J. E.
Alvarellos
,
Phys. Chem. Chem. Phys.
14
,
1756
(
2012
).
29.
W.
Mi
,
A.
Genova
, and
M.
Pavanello
,
J. Chem. Phys.
148
,
184107
(
2018
).
30.
M.
Levy
and
J. P.
Perdew
,
Phys. Rev. A
32
,
2010
(
1985
).
31.
S. B.
Liu
and
R. G.
Parr
,
Phys. Rev. A
53
,
2211
(
1996
).
32.
Z.-Z.
Yang
,
S. B.
Liu
, and
Y. A.
Wang
,
Chem. Phys. Lett.
258
,
30
(
1996
).
33.
S. B.
Liu
and
R. G.
Parr
,
Chem. Phys. Lett.
278
,
341
(
1997
).
34.
P. W.
Ayers
,
R. G.
Parr
, and
Á.
Nagy
,
Int. J. Quantum Chem.
90
,
309
(
2002
).
35.
36.
N. H.
March
,
J. Comput. Chem.
8
,
375
(
1987
).
37.
M.
Levy
and
O.-Y.
Hui
,
Phys. Rev. A
38
,
625
(
1988
).
38.
A.
Holas
and
N. H.
March
,
Phys. Rev. A
44
,
5521
(
1991
).
39.
S. B.
Liu
,
C.
Rong
,
T.
Lu
, and
H.
Hu
,
J. Phys. Chem. A
122
,
3087
(
2018
).
40.
Y.
Huang
,
L.
Liu
,
C.
Rong
,
T.
Lu
,
P. W.
Ayers
, and
S. B.
Liu
,
J. Mol. Model.
24
,
213
(
2018
).
41.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
42.
C. F. v.
Weizsäcker
,
Z. Phys.
96
,
431
(
1935
).
43.
S. B.
Liu
,
J. Chem. Phys.
126
,
244103
(
2007
).
44.
J. P.
Perdew
,
J.
Tao
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
J. Chem. Phys.
120
,
6898
(
2004
).
45.
A.
Ruzsinszky
,
J.
Sun
,
B.
Xiao
, and
G. I.
Csonka
,
J. Chem. Theory Comput.
8
,
2078
(
2012
).
46.
J.
Sun
,
B.
Xiao
,
Y.
Fang
,
R.
Haunschild
,
P.
Hao
,
A.
Ruzsinszky
,
G. I.
Csonka
,
G. E.
Scuseria
, and
J. P.
Perdew
,
Phys. Rev. Lett.
111
,
106401
(
2013
).
47.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perd
,
Phys. Rev. Lett.
115
,
036402
(
2015
).
48.
D. A.
Kirzhnits
, Zh. Eksperim. i. Teor. Fiz. 32, 115 (1957) [
J. Soviet. Phys. JETP
5
,
64
(
1957
)].
49.
E. K. U.
Gross
and
R. M.
Dreizler
,
Phys. Rev. A
20
,
1798
(
1979
).
50.
N.
Govind
,
J.
Wang
, and
H.
Guo
,
Phys. Rev. B
50
,
11175
(
1994
).
51.
K.
Yonei
,
J. Phys. Soc. Jpn.
22
,
1127
(
1967
).
52.
A. J.
Thakkar
and
W. A.
Pedersen
,
Int. J. Quantum Chem.
38
,
327
(
1990
).
53.
E. W.
Pearson
and
R. G.
Gordon
,
J. Chem. Phys.
82
,
881
(
1985
).
54.
A. E.
DePristo
and
J. D.
Kress
,
Phys. Rev. A
35
,
438
(
1987
).
55.
H.
Lee
,
C.
Lee
, and
R. G.
Parr
,
Phys. Rev. A
44
,
768
(
1991
).
56.
H.
Ou-Yang
and
L.
Mel
,
Int. J. Quantum Chem.
40
,
379
(
1991
).
57.
H.
Ou-Yang
and
M.
Levy
,
Phys. Rev. A
42
,
155
(
1990
).
58.
A. D.
Becke
,
J. Chem. Phys.
85
,
7184
(
1986
).
59.
A. D.
Becke
,
J. Chem. Phys.
84
,
4524
(
1986
).
60.
A. E.
DePristo
and
J. D.
Kress
,
J. Chem. Phys.
86
,
1425
(
1987
).
61.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
62.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
63.
P. K.
Acharya
,
L. J.
Bartolotti
,
S. B.
Sears
, and
R. G.
Parr
,
Proc. Natl. Acad. Sci. U. S. A.
77
,
6978
(
1980
).
64.
J. L.
Gázquez
and
J.
Robles
,
J. Chem. Phys.
76
,
1467
(
1982
).
65.
S.
Laricchia
,
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Theory Comput.
10
,
164
(
2014
).
66.
M.
Brack
,
B. K.
Jennings
, and
Y. H.
Chu
,
Phys. Lett. B
65
,
1
(
1976
).
67.
C. H.
Hodges
,
Can. J. Phys.
51
,
1428
(
1973
).
68.
T.
Lu
and
F.
Chen
,
J. Comput. Chem.
33
,
580
(
2012
).
69.
M. J.
Frisch
,
G. W.
Trucks
, and
H. B.
Schlegel
, gaussian 16, Revision A.03,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
70.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
71.
M. M.
Francl
,
W. J.
Pietro
,
W. J.
Hehre
,
J. S.
Binkley
,
M. S.
Gordon
,
D. J.
DeFrees
, and
J. A.
Pople
,
J. Chem. Phys.
77
,
3654
(
1982
).
72.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
73.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
74.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
75.
A. D.
Becke
,
J. Chem. Phys.
88
,
2547
(
1988
).
76.
V. G.
Tsirelson
,
A. I.
Stash
,
V. V.
Karasiev
, and
S. B.
Liu
,
Comput. Theor. Chem.
1006
,
92
(
2013
).
77.
S. B.
Liu
,
R. G.
Parr
, and
Á.
Nagy
,
Phys. Rev. A
52
,
2645
(
1995
).
78.
S. B.
Liu
,
J. Chem. Phys.
126
,
191107
(
2007
).
79.
A. L.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
,
Computation
4
,
19
(
2016
).
80.
J. S. M.
Anderson
,
P. W.
Ayers
, and
J. I. R.
Hernandez
,
J. Phys. Chem. A
114
,
8884
(
2010
).
You do not currently have access to this content.