The dynamical properties of entangled polymers originate from the dynamic constraints due to the uncrossability between polymer chains. We propose a highly coarse-grained simulation model with transient bonds for such dynamically constrained systems. Based on the ideas of the responsive particle dynamics (RaPiD) model [P. Kindt and W. J. Briels, J. Chem. Phys. 127, 134901 (2007)] and the multi-chain slip-spring model [T. Uneyama and Y. Masubuchi, J. Chem. Phys. 137, 154902 (2012)], we construct the RaPiD type transient bond model as a coarse-grained slip-spring model. In our model, a polymer chain is expressed as a single particle, and particles are connected by transient bonds. The transient bonds modulate the dynamics of particles, but they do not affect static properties in equilibrium. We show the relation between parameters for the entangled polymer systems and those for the transient bond model. By performing simulations based on the transient bond model, we show how model parameters affect the linear viscoelastic behavior and the diffusion behavior. We also show that the viscoelastic behavior of entangled polymer systems can be well reproduced by the transient bond model.

1.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
Oxford
,
1986
).
2.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
3.
C. C.
Hua
and
J. D.
Schieber
,
J. Chem. Phys.
109
,
10018
(
1998
).
4.
Y.
Masubuchi
,
J.
Takimoto
,
K.
Koyama
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Chem. Phys.
115
,
4387
(
2001
).
5.
J. D.
Schieber
,
J. Chem. Phys.
118
,
5162
(
2003
).
6.
M.
Doi
and
J.
Takimoto
,
Philos. Trans. R. Soc. London, Ser. B
361
,
641
(
2003
).
7.
D. M.
Nair
and
J. D.
Schieber
,
Macromolecules
39
,
3386
(
2006
).
8.
R. N.
Khaliullin
and
J. D.
Schieber
,
Macromolecules
42
,
7504
(
2009
).
9.
A. E.
Likhtman
,
Macromolecules
38
,
6128
(
2005
).
10.
T.
Uneyama
,
Nihon Reoroji Gakkaishi
39
,
135
(
2011
).
11.
V. C.
Chappa
,
D. C.
Morse
,
A.
Zippelius
, and
M.
Müller
,
Phys. Rev. Lett.
109
,
148302
(
2012
).
12.
T.
Uneyama
and
Y.
Masubuchi
,
J. Chem. Phys.
137
,
154902
(
2012
).
13.
P.
Kindt
and
W. J.
Briels
,
J. Chem. Phys.
127
,
134901
(
2007
).
14.
I. S.
Santos de Oliveira
,
B. W.
Fitzgerald
,
W. K.
den Otter
, and
W. J.
Briels
,
J. Chem. Phys.
140
,
104903
(
2014
).
15.
J.
Sprakel
,
E.
Spruijt
,
J.
van der Gucht
,
J. T.
Padding
, and
W. J.
Briels
,
Soft Matter
5
,
4748
(
2009
).
16.
J.
Sprakel
,
J. T.
Padding
, and
W. J.
Briels
,
Europhys. Lett.
93
,
58003
(
2011
).
17.
L.
Liu
,
J. T.
Padding
,
W. K.
den Otter
, and
W. J.
Briels
,
J. Chem. Phys.
138
,
244912
(
2013
).
18.
L.
Liu
,
W. K.
den Otter
, and
W. J.
Briels
,
Soft Matter
10
,
7874
(
2014
).
19.
B. W.
Fitzgerald
,
H.
Lentzakis
,
G.
Sakellariou
,
D.
Vlassopoulos
, and
W. J.
Briels
,
J. Chem. Phys.
141
,
114907
(
2014
).
20.
B. W.
Fitzgerald
and
W. J.
Briels
,
Macromol. Theory Simul.
27
,
1700069
(
2018
).
21.
T.
Uneyama
and
K.
Horio
,
J. Polym. Sci., Part B: Polym. Phys.
49
,
966
(
2011
).
22.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
, 3rd ed. (
Elsevier
,
Amsterdam
,
2007
).
23.
J.
Ramirez
,
S. K.
Sukumaran
, and
A. E.
Likhtman
,
J. Chem. Phys.
126
,
244904
(
2007
).
24.
T.
Inoue
and
K.
Osaki
,
Macromolecules
29
,
1595
(
1996
).
25.
M.
Kröger
,
C.
Luap
, and
R.
Muller
,
Macromolecules
30
,
526
(
1997
).
26.
D. J.
Evans
and
G. P.
Morris
,
Statistical Mechanics of Nonequilibrium Liquids
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2008
).
27.
R. L.
Honeycutt
,
Phys. Rev. A
45
,
600
(
1992
).
28.
A. E.
Likhtman
, in
Polymer Science: A Comprehensive Reference
, edited by
K.
Matyjaszewski
and
M.
Möeller
(
Elsevier
,
Amsterdam
,
2012
), pp.
133
179
.
29.
M.
Matsumoto
and
T.
Nishimura
,
ACM Trans. Model. Comput. Simul.
8
,
3
(
1998
).
30.
A. E.
Likhtman
,
S. K.
Sukumaran
, and
J.
Ramirez
,
Macromolecules
40
,
6748
(
2007
).
31.
T. P.
Lodge
,
Phys. Rev. Lett.
83
,
3218
(
1999
).
33.
R.
Yamamoto
and
A.
Onuki
,
Phys. Rev. E
58
,
3515
(
1998
).
34.
H.
Sillescu
,
J. Non-Cryst. Solids
243
,
81
(
1999
).
35.
T.
Uneyama
,
T.
Miyaguchi
, and
T.
Akimoto
,
Phys. Rev. E
92
,
032140
(
2015
).
36.
C.-Y.
Liu
,
A. F.
Halasa
,
R.
Keunings
, and
C.
Bailly
,
Macromolecules
39
,
7415
(
2006
).
37.
Y.
Matsumiya
,
K.
Kumazawa
,
M.
Nagao
,
O.
Urakawa
, and
H.
Watanabe
,
Macromolecules
46
,
6067
(
2013
).
38.
Y.
Masubuchi
,
Y.
Amamoto
,
A.
Pandey
, and
C.-Y.
Liu
,
Soft Matter
13
,
6585
(
2017
).
39.
T.
Uneyama
,
S.
Suzuki
, and
H.
Watanabe
,
Phys. Rev. E
86
,
031802
(
2012
).
40.
Y.
Masubuchi
and
T.
Uneyama
,
Soft Matter
14
,
5986
(
2018
).
41.
P.
Español
and
P.
Warren
,
Europhys. Lett.
30
,
191
(
1995
).
42.
T.
Kinjo
and
S.
Hyodo
,
Phys. Rev. E
75
(
5
),
051109
(
2007
).
43.
M.
Langeloth
,
Y.
Masubuchi
,
M. C.
Böhm
, and
F.
Müller-Plathe
,
J. Chem. Phys.
138
,
104907
(
2013
).
44.
K.
Kawasaki
,
J. Phys. A: Math., Nucl. Gen.
6
,
1289
(
1973
).
You do not currently have access to this content.