The behavior of water, methanol, and water-methanol mixtures confined in narrow slit graphite pores as a function of pore size was investigated by Monte Carlo, hybrid Monte Carlo, and Molecular Dynamics simulations. Interactions were described using TIP4P/2005 for water, OPLS/2016 for methanol, and cross interactions fitted to excess water/methanol properties over the whole range of concentrations, which provide a rather accurate description of water-methanol mixtures. As expected for hydrophobic pores, whereas pure methanol is adsorbed already from the gas phase, pure water only enters the pore at pressures well beyond bulk saturation for all pore sizes considered. When adsorbed from a mixture, however, water adsorbs at much lower pressures due to the formation of hydrogen bonds with previously adsorbed methanol molecules. For all studied compositions and pore sizes, methanol adsorbs preferentially over water at liquid-vapor equilibrium conditions. In pure components, both water and methanol are microscopically structured in layers, the number of layers increasing with pore size. This is also the case in adsorbed mixtures, in which methanol has a higher affinity for the walls. This becomes more evident as the pore widens. Diffusion of pure water is higher than that of pure methanol for all pore sizes due to the larger size of the methyl group. In mixtures, both components present similar diffusivities at all pore sizes, which is explained in terms of the coupling of molecular movements due to strong hydrogen bonding between methanol and water molecules. This is particularly evident in very narrow pores, in which pure methanol diffusion is completely impeded on the time scale of our simulations, but the presence of a small amount of water molecules facilitates alcohol diffusion following a single-file mechanism. Additionally, our results indicate that pure water diffusivities display a non-monotonous dependence of pore size, due to effects of confinement (proximity to a fluid-solid-fluid transition induced by confinement as reported in previous work) and the dynamic anomalies of water.

1.
L. M.
Vane
, “
Separation technologies for the recovery and dehydration of alcohols from fermentation broths
,”
Biofuels, Bioprod. Biorefin.
2
,
553
588
(
2008
).
2.
K.
Koga
,
G. T.
Gao
,
H.
Tanaka
, and
X. C.
Zeng
, “
Formation of ordered ice nanotubes inside carbon nanotubes
,”
Nano Lett.
412
,
802
805
(
2001
).
3.
A.
Striolo
, “
The mechanism of water diffusion on narrow carbon nanotubes
,”
Nano Lett.
6
,
633
639
(
2006
).
4.
P.
Kumar
,
S. V.
Buldyrev
,
F. W.
Starr
,
N.
Giovambattista
, and
H. E.
Stanley
, “
Thermodynamics, structure and dynamics of water confined between hydrophobic plates
,”
Phys. Rev. E
72
,
051503
(
2005
).
5.
N.
Giovambattista
,
P. J.
Rossky
, and
P. G.
Debenedetti
, “
Phase transitions induced by nanoconfinement in liquid water
,”
Phys. Rev. Lett.
102
,
050603
(
2009
).
6.
G.
Algara-Siller
,
O.
Lehtinen
,
F. C.
Wang
,
R. R.
Nair
,
U.
Kaiser
,
H. A.
Wu
,
A. K.
Geim
, and
I. V.
Grigorieva
, “
Square ice in graphene nanocapilaries
,”
Nature
519
,
443
(
2015
).
7.
P.
Hirunsit
and
P. B.
Balbuena
, “
Effects of confinement on water structure and dynamics: A molecular simulation study
,”
J. Phys. Chem. C
111
,
1709
1715
(
2007
).
8.
D.
Argyris
,
N. R.
Tummala
,
A.
Striolo
, and
D. R.
Cole
, “
Molecular structure and dynamics in thin water films at the silica and graphite surfaces
,”
J. Phys. Chem. C
112
,
13587
13599
(
2008
).
9.
P. A.
Bonnaud
,
B.
Coasne
, and
R. J.-M.
Pellenq
, “
Molecular simulation of water confined in nanoporous silica
,”
J. Phys.: Condens. Matter
22
,
284110
(
2010
).
10.
R.
Srivastava
,
H.
Docherty
,
J. K.
Singh
, and
P. T.
Cummings
, “
Phase transition of water in graphite and mica pores
,”
J. Phys. Chem. C
115
,
12488
(
2011
).
11.
J.-C.
Liu
and
P. A.
Monson
, “
Does water condense in carbon pores?
,”
Langmuir
21
,
10219
(
2005
).
12.
A.
Striolo
,
A. A.
Chialvo
,
P. T.
Cummings
, and
K. E.
Gubbins
, “
Water adsorption in carbon-slit nanopores
,”
Langmuir
19
,
8583
(
2003
).
13.
Z.
Gao
,
N.
Giovambattista
, and
O.
Sahin
, “
Phase diagram of water confined by graphene
,”
Sci. Rep.
8
,
6228
(
2018
).
14.
J.
Dix
,
L.
Lue
, and
P.
Carbone
, “
Why different models predict different structures under 2D confinement
,”
J. Comput. Chem.
39
(
25
),
2051
2059
(
2018
).
15.
C.
Alba-Simionesco
,
B.
Coasne
,
G.
Dosseh
,
G.
Dudziak
,
K. E. G. R.
Radhakrishnan
, and
M.
Sliwinska-Bartkowiak
, “
Effects of confinement on freezing and melting
,”
J. Phys.: Condens. Matter
18
,
R15
R68
(
2006
).
16.
K.
Nomura
,
T.
Kaneko
,
J.
Bai
,
J. S.
Francisco
,
K.
Yasuoka
, and
X. C.
Zeng
, “
Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
4066
4071
(
2017
).
17.
N.
Severin
,
I. M.
Sokolov
, and
J. P.
Rabe
, “
Dynamics of ethanol and water mixtures observed in a self-adjusting molecularly thin slit pore
,”
Langmuir
30
,
3455
3459
(
2014
).
18.
N.
Severin
,
J.
Gienger
,
V.
Scenev
,
P.
Lange
,
I. M.
Sokolov
, and
J. P.
Rabe
, “
Nanophase separation un monomolecularly thin water-ethanol films controlled by graphene
,”
Nano Lett.
15
,
1171
1176
(
2015
).
19.
P.
Bampoulis
,
J. P.
Witteveen
,
E. S.
Kooij
,
D.
Lohse
, and
B.
Poelsema
, “
Structure and dynamics of confined alcohol-water mixtures
,”
ACS Nano
10
,
6762
6768
(
2016
).
20.
M.
Zhao
and
X.
Yang
, “
Segregation structures and miscellaneous diffusions for ethanol/water mixtures in graphene-based nanoscale pores
,”
J. Phys. Chem. C
119
,
21664
(
2015
).
21.
Q.
Gao
,
Y.
Zhu
,
Y.
Ruan
,
Y.
Zhang
,
W.
Zhu
,
X.
Lu
, and
L.
Lu
, “
Effect of adsorbed alcohol layers on the behavior of water molecules confined in a graphene nanoslit: A molecular dynamics study
,”
Langmuir
33
,
11467
(
2017
).
22.
S.
Gravelle
,
H.
Yoshida
,
L.
Yoly
,
C.
Ybert
, and
L.
Bocquet
, “
Carbon membranes for efficient water-ethanol separation
,”
J. Chem. Phys.
145
,
124708
(
2015
).
23.
A.
Kommu
and
J. K.
Singh
, “
Separation of ethanol and water using graphene and hexagonal boron nitride slit pores: A molecular dynamics study
,”
J. Phys. Chem. C
121
,
7867
7880
(
2017
).
24.
V. T.
Nguyen
,
D. D.
Do
, and
D.
Nicholson
, “
Microscopic configurations of methanol molecules in graphitic slit micropores: A computer simulation study
,”
J. Colloid Interface Sci.
396
,
215
226
(
2013
).
25.
F.
Mozaffari
, “
Molecular dynamics simulation study on the structure and the dynamic properties of nano-confined alcohols between graphene surfaces
,”
Fluid Phase Equilib.
431
,
8
15
(
2017
).
26.
A. V.
Shevade
,
S.
Jiang
, and
K. E.
Gubbins
, “
Adsorption of water-methanol mixtures in carbon and alumino-silicate pores: A molecular dynamics study
,”
Mol. Phys.
97
,
1139
1148
(
1999
).
27.
T.
Ohkubo
,
T.
Iiyama
, and
K.
Kaneko
, “
Organized structures of methanol in carbon nanospaces at 303 K studies with in situ x-ray diffraction
,”
Chem. Phys. Lett.
312
,
191
195
(
1999
).
28.
A.
Andreu
,
H. F.
Stoeckli
, and
R. H.
Bradley
, “
Specific and non-specific interactions on carbon black surfaces
,”
Carbon
45
,
1854
1864
(
2007
).
29.
K.
Morishige
and
K.
Mikawa
, “
Tensile effect on crystal nucleation of methanol and ethanol confined in pores
,”
J. Phys. Chem. C
116
,
3618
3622
(
2012
).
30.
Z. J.
Derlacki
,
A. J.
Easteal
,
A. V. J.
Edge
,
L. A.
Woolf
, and
Z.
Roksandic
, “
Diffusion coefficients of methanol and water and the mutual diffusion coefficient in methanol-water solutions at 278 and 298 K
,”
J. Phys. Chem.
89
,
5318
5322
(
1985
).
31.
K. R.
Harris
,
P. J.
Nevitt
, and
Z. J.
Derlacki
, “
Alcohol tracer diffusion, density, NMR and FTIR studies of acqueous 2,2,2-trifluoroethanol solutions at 25 °C
,”
J. Chem. Soc., Faraday Trans.
94
,
1963
1970
(
1998
).
32.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
33.
D.
González-Salgado
and
C.
Vega
, “
A new intermolecular potential for simulations of methanol: The OPLS/2016 model
,”
J. Chem. Phys.
145
,
034508
(
2016
).
34.
D.
González-Salgado
,
K.
Zemankova
,
E. G.
Noya
, and
E.
Lomba
, “
Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol
,”
J. Chem. Phys.
144
,
184505
(
2016
).
35.
C.
Vega
,
J. L. F.
Abascal
, and
I.
Nezbeda
, “
Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/ew, TIP4P/2005, and TIP4P/ice
,”
J. Chem. Phys.
125
,
034503
(
2006
).
36.
C.
Vega
,
J. L. F.
Abascal
,
M. M.
Conde
, and
J. L.
Aragonés
, “
What ice can teach us about water interactions: A critical comparison of the performance of different water models
,”
Faraday Discuss.
141
,
251
276
(
2009
).
37.
M.
Mijaković
,
K. D.
Polok
,
B.
Kez̆ić
,
A.
Perera
, and
L.
Zoranić
, “
A comparison of force fields for ethanol-water mixtures
,”
Mol. Simul.
41
,
699
712
(
2015
).
38.
P.
Gómez-Álvarez
,
E. G.
Noya
,
E.
Lomba
,
S.
Valencia
, and
J.
Pires
, “
Study of short-chain alcohol and alcohol-water adsorption in MEL and MFI zeolites
,”
Langmuir
34
,
12739
(
2018
).
39.
D.
Feller
and
K. D.
Jordan
, “
Estimating the strength of the water/single-layer graphite interaction
,”
J. Phys. Chem. A
104
,
9971
9975
(
2000
).
40.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
, “
On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes
,”
J. Phys. Chem. B
107
,
1345
1352
(
2003
).
41.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
Boston
,
1996
).
42.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
43.
F. R.
Hockney
and
J.
Eastwood
,
Computer Simulation Using Particles
(
Adam Hilger
,
1988
).
44.
S.
Nose
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
45.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
46.
C.
Vega
,
E.
Sanz
,
J. L.
Abascal
, and
E. G.
Noya
, “
Determination of phase diagrams by computer simulation: Methodology and applications to water, electrolytes and proteins
,”
J. Phys.: Condens. Matter
20
,
153101
(
2008
).
47.
J.
Gmehling
and
U.
Onken
,
Vapor-Liquid Equilibrium Data Collection: Aqueous-Organic Systems
, Dechema Chemistry Data Series (
Dechema
,
1977
), Vol. I, Part 1.
48.
P.
Bai
,
M.
Tsapatsis
, and
J. L.
Siepmann
, “
Multicomponent adsorption of alchols onto silicalite-1 from aqueous solution: Isotherms, structural analysis, and assessment of ideal adsorbed solution theory
,”
Langmuir
28
,
15566
15576
(
2012
).
49.
D.
Dubbeldam
,
S.
Calero
,
D. E.
Ellis
, and
R. Q.
Snurr
, “
Raspa: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials
,”
Mol. Simul.
42
,
81
101
(
2016
).
50.
D.
Dubbeldam
,
A.
Torres-Knoop
, and
K. S.
Walton
, “
On the inner workings of Monte Carlo codes
,”
Mol. Simul.
39
,
1253
1292
(
2013
).
51.
L.
Sarkisov
and
P. A.
Monson
, “
Hysteresis in Monte Carlo and molecular dynamics simulations of adsorption in porous materials
,”
Langmuir
16
,
9857
(
2000
).
52.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
(
1987
).
53.
W. A.
Steele
, “
The physical interaction of gases with crystalline solids. I. Gas-solid energies and properties of isolated adsorbed atoms
,”
Surf. Sci.
36
,
317
(
1973
).
54.
M. M.
Dubinin
,
G. U.
Rakhmatkariev
, and
A. A.
Isirikyan
, “
Differential heats of adsorption and adsorption isotherms of alcohols on silicalite
,”
Bull. Acad. Sci. USSR Div. Chem. Sci.
38
,
1950
1953
(
1989
).
55.
Y.
Oumi
,
A.
Miyajima
, and
J.
Miyamoto
,
Studies in Surface Science and Catalysis
(
Elsevier
,
Amsterdam
,
2002
), Vol. 142.
56.
J.
Rouquerol
,
F.
Rouquerol
,
K.
Sing
,
P.
LLewellyn
, and
G.
Maurin
,
Adsorption by Powders and Porous Solids, Principles, Methodology and Applications
, 2nd ed. (
Academic Press
,
London, UK
,
2014
).
57.
W. L.
Jorgensen
, “
Optimized intermolecular potential functions for liquid alcohols
,”
J. Phys. Chem.
90
,
1276
1284
(
1986
).
58.
O.
Suárez-Iglesias
,
I.
Medina
,
M.
de los Ángeles Sanz
,
C.
Pizarro
, and
J. L.
Bueno
, “
Self-diffusion in molecular fluids and noble gases: Available data
,”
J. Chem. Eng. Data
60
,
2757
2817
,
2015
.
59.
R.
Zangi
, “
Water confined to a slab geometry: A review of recent computer simulation studies
,”
J. Phys.: Condens. Matter
16
,
S0953
S8984
(
2004
).
60.
J.
Martí
,
C.
Calero
, and
G.
Franzese
, “
Structure and dynamics of water at carbon-based interfaces
,”
Entropy
19
,
135
(
2017
).
61.
R.
Krishna
and
J. M.
van Baten
, “
Hydrogen bonding effects in adsorption of water-alcohol mixtures in zeolites and the consequences for the characteristics of the Maxwell-Stefan diffusivities
,”
Langmuir
26
,
10854
10867
(
2010
).
You do not currently have access to this content.