Synthetic biology aims at designing modular genetic circuits that can be assembled according to the desired function. When embedded in a cell, a circuit module becomes a small subnetwork within a larger environmental network, and its dynamics is therefore affected by potentially unknown interactions with the environment. It is well-known that the presence of the environment not only causes extrinsic noise but also memory effects, which means that the dynamics of the subnetwork is affected by its past states via a memory function that is characteristic of the environment. We study several generic scenarios for the coupling between a small module and a larger environment, with the environment consisting of a chain of mono-molecular reactions. By mapping the dynamics of this coupled system onto random walks, we are able to give exact analytical expressions for the arising memory functions. Hence, our results give insights into the possible types of memory functions and thereby help to better predict subnetwork dynamics.

1.
R. P.
Shetty
,
D.
Endy
, and
T. F.
Knight
,
J. Biol. Eng.
2
,
5
(
2008
).
2.
E.
Andrianantoandro
,
S.
Basu
,
D. K.
Karig
, and
R.
Weiss
,
Mol. Syst. Biol.
2
,
2006.0028
(
2006
).
3.
P. E. M.
Purnick
and
R.
Weiss
,
Nat. Rev. Mol. Cell Biol.
10
,
410
(
2009
).
4.
S.
Cardinale
and
A. P.
Arkin
,
Biotechnol. J.
7
,
856
(
2012
).
5.
J.
Saez-Rodriguez
,
A.
Kremling
, and
E. D.
Gilles
,
Comput. Chem. Eng.
29
,
619
(
2005
).
6.
D.
Del Vecchio
,
A. J.
Ninfa
, and
E. D.
Sontag
,
Mol. Syst. Biol.
4
,
161
(
2008
).
7.
W.
Liebermeister
,
U.
Baur
, and
E.
Klipp
,
FEBS J.
272
,
4034
(
2005
).
8.
K. J.
Rubin
,
K.
Lawler
,
P.
Sollich
, and
T.
Ng
,
J. Theor. Biol.
357
,
245
(
2014
).
9.
C.
Zechner
,
M.
Unger
,
S.
Pelet
,
M.
Peter
, and
H.
Koeppl
,
Nat. Methods
11
,
197
(
2014
).
10.
C.
Zechner
and
H.
Koeppl
,
PLoS Comput. Biol.
10
,
e1003942
(
2014
).
11.
L.
Bronstein
and
H.
Koeppl
,
Phys. Rev. E
97
,
062147
(
2018
).
12.
Z.
Cao
and
R.
Grima
,
Nat. Commun.
9
,
3305
(
2018
).
13.
T. G.
Kurtz
,
Ann. Probab.
8
,
682
(
1980
).
14.
R.
Kühne
and
P.
Reineker
,
Z. Phys. B: Condens. Matter
31
,
105
(
1978
).
15.
S.
Nakajima
,
Prog. Theor. Phys.
20
,
948
(
1958
).
16.
R.
Zwanzig
,
J. Chem. Phys.
33
,
1338
(
1960
).
17.
H.
Mori
,
Prog. Theor. Phys.
33
,
423
(
1965
).
18.
P.
Thomas
,
R.
Grima
, and
A. V.
Straube
,
Phys. Rev. E
86
,
041110
(
2012
).
19.
D.
Venturi
and
G. E.
Karniadakis
,
Proc. R. Soc. A
470
,
20130754
(
2014
).
20.
J. H.
Hofmeyr
,
H.
Kacser
, and
K. J.
van der Merwe
,
Eur. J. Biochem.
155
,
631
(
1986
).
21.
T.
Schwander
,
L.
Schada von Borzyskowski
,
S.
Burgener
,
N. S.
Cortina
, and
T. J.
Erb
,
Science
354
,
900
(
2016
).
22.
N.
Tokuriki
and
D. S.
Tawfik
,
Science
324
,
203
(
2009
).
23.
K.
Semrad
,
Biochem. Res. Int.
2011
,
532908
.
24.
T.
Jahnke
and
W.
Huisinga
,
J. Math. Biol.
54
,
1
(
2007
).
25.
A.
Stephan
and
H.
Stephan
, e-print arXiv:1804.02332 [math] (
2018
).
26.
C. R.
Heathcote
and
J. E.
Moyal
,
Biometrika
46
,
400
(
1959
).
27.
M. B.
Elowitz
and
S.
Leibler
,
Nature
403
,
335
(
2000
).
28.
D.
Bratsun
,
D.
Volfson
,
L. S.
Tsimring
, and
J.
Hasty
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
14593
(
2005
).
29.
C.
Briat
and
M.
Khammash
, e-print arXiv:1811.09188 [cs, math, q-bio] (
2018
).
You do not currently have access to this content.