We present an efficient and low-scaling implementation of a density functional theory based method for the computation of electronic g-tensors. It allows for an accurate description of spin-orbit coupling effects by employing the spin-orbit mean-field operator. Gauge-origin independence is ensured by the use of gauge-including atomic orbitals. Asymptotically linear scaling with molecule size is achieved with an atomic orbital based formulation, integral screening methods, and sparse linear algebra. In addition, we introduce an ansatz that exploits the locality of the contributions to the g-tensor for molecules with local spin density. For such systems, sublinear scaling is obtained by restricting the magnetic field perturbation to the relevant subspaces of the full atomic orbital space; several criteria for selecting these subspaces are discussed and compared. It is shown that the computational cost of g-tensor calculations with the local approach can fall below the cost of the self-consistent field calculation for large molecules. The presented methods thus enable efficient, accurate, and gauge-origin independent computations of electronic g-tensors of large molecular systems.

1.
B.
Odom
,
D.
Hanneke
,
B.
d’Urso
, and
G.
Gabrielse
,
Phys. Rev. Lett.
97
,
030801
(
2006
).
2.
D.
Hanneke
,
S. F.
Hoogerheide
, and
G.
Gabrielse
,
Phys. Rev. A
83
,
052122
(
2011
).
3.
4.
S.
Laporta
and
E.
Remiddi
,
Phys. Lett. B
379
,
283
(
1996
).
5.
T.
Aoyama
,
M.
Hayakawa
,
T.
Kinoshita
, and
M.
Nio
,
Phys. Rev. Lett.
109
,
111807
(
2012
).
6.
T.
Aoyama
,
M.
Hayakawa
,
T.
Kinoshita
, and
M.
Nio
,
Phys. Rev. D
91
,
033006
(
2015
).
7.
J. E.
Harriman
,
Theoretical Foundations of Electron Spin Resonance: Physical Chemistry: A Series of Monographs
(
Academic Press
,
2013
).
8.
S.
Frantz
,
H.
Hartmann
,
N.
Doslik
,
M.
Wanner
,
W.
Kaim
,
H.-J.
Kümmerer
,
G.
Denninger
,
A.-L.
Barra
,
C.
Duboc-Toia
,
J.
Fiedler
 et al.,
J. Am. Chem. Soc.
124
,
10563
(
2002
).
9.
J. R.
Asher
,
N. L.
Doltsinis
, and
M.
Kaupp
,
J. Am. Chem. Soc.
126
,
9854
(
2004
).
10.
L.
Benisvy
,
R.
Bittl
,
E.
Bothe
,
C. D.
Garner
,
J.
McMaster
,
S.
Ross
,
C.
Teutloff
, and
F.
Neese
,
Angew. Chem., Int. Ed.
44
,
5314
(
2005
).
11.
T.
Yamaji
,
I. S.
Saiful
,
M.
Baba
,
S.
Yamauchi
, and
J.
Yamauchi
,
J. Phys. Chem. A
111
,
4612
(
2007
).
12.
J.
Niklas
,
M.
Westwood
,
K. L.
Mardis
,
T. L.
Brown
,
A. M.
Pitts-McCoy
,
M. D.
Hopkins
, and
O. G.
Poluektov
,
Inorg. Chem.
54
,
6226
(
2015
).
13.
M. R.
Fuchs
,
E.
Schleicher
,
A.
Schnegg
,
C. W.
Kay
,
J. T.
Törring
,
R.
Bittl
,
A.
Bacher
,
G.
Richter
,
K.
Möbius
, and
S.
Weber
,
J. Phys. Chem. B
106
,
8885
(
2002
).
14.
R.
Owenius
,
M.
Engström
,
M.
Lindgren
, and
M.
Huber
,
J. Phys. Chem. A
105
,
10967
(
2001
).
15.
M.
Witwicki
,
A. R.
Jaszewski
,
J.
Jezierska
,
M.
Jerzykiewicz
, and
A.
Jezierski
,
Chem. Phys. Lett.
462
,
300
(
2008
).
16.
M.
Fehr
,
A.
Schnegg
,
B.
Rech
,
K.
Lips
,
O.
Astakhov
,
F.
Finger
,
G.
Pfanner
,
C.
Freysoldt
,
J.
Neugebauer
,
R.
Bittl
, and
C.
Teutloff
,
Phys. Rev. B
84
,
245203
(
2011
).
17.
C.
Bährle
,
T. U.
Nick
,
M.
Bennati
,
G.
Jeschke
, and
F.
Vogel
,
J. Phys. Chem. A
119
,
6475
(
2015
).
18.
C.
Gionco
,
M. C.
Paganini
,
E.
Giamello
,
R.
Burgess
,
C.
Di Valentin
, and
G.
Pacchioni
,
Chem. Mater.
25
,
2243
(
2013
).
19.
J.
Niklas
,
K. L.
Mardis
,
R. R.
Rakhimov
,
K. L.
Mulfort
,
D. M.
Tiede
, and
O. G.
Poluektov
,
J. Phys. Chem. B
116
,
2943
(
2012
).
20.
W.
Sinha
,
M. G.
Sommer
,
N.
Deibel
,
F.
Ehret
,
M.
Bauer
,
B.
Sarkar
, and
S.
Kar
,
Angew. Chem., Int. Ed.
54
,
13769
(
2015
).
21.
Q.
Daniel
,
P.
Huang
,
T.
Fan
,
Y.
Wang
,
L.
Duan
,
L.
Wang
,
F.
Li
,
Z.
Rinkevicius
,
F.
Mamedov
,
M.
Ahlquist
,
S.
Styring
, and
L.
Sun
,
Coord. Chem. Rev.
346
,
206
(
2017
).
22.
H.
Malissa
,
R.
Miller
,
D.
Baird
,
S.
Jamali
,
G.
Joshi
,
M.
Bursch
,
S.
Grimme
,
J.
van Tol
,
J.
Lupton
, and
C.
Boehme
,
Phys. Rev. B
97
,
161201
(
2018
).
23.
J.
Niklas
,
K. L.
Mardis
, and
O. G.
Poluektov
,
J. Phys. Chem. Lett.
9
,
3915
(
2018
).
24.
W.
Moores
and
R.
McWeeny
,
Proc. R. Soc. London, Ser. A
332
,
365
(
1973
).
26.
F.
Neese
,
J. Chem. Phys.
115
,
11080
(
2001
).
27.
G.
Schreckenbach
and
T.
Ziegler
,
J. Phys. Chem. A
101
,
3388
(
1997
).
29.
R.
Ditchfield
,
J. Chem. Phys.
65
,
3123
(
1976
).
30.
K.
Wolinski
,
J. F.
Hinton
, and
P.
Pulay
,
J. Am. Chem. Soc.
112
,
8251
(
1990
).
31.
B. A.
Heß
,
C. M.
Marian
,
U.
Wahlgren
, and
O.
Gropen
,
Chem. Phys. Lett.
251
,
365
(
1996
).
32.
B.
Schimmelpfennig
,
AMFI–An Atomic Mean Field Integral Program
(
Stockholm University
,
1996
).
33.
B.
Schimmelpfennig
,
L.
Maron
,
U.
Wahlgren
,
C.
Teichteil
,
H.
Fagerli
, and
O.
Gropen
,
Chem. Phys. Lett.
286
,
267
(
1998
).
34.
F.
Neese
,
J. Chem. Phys.
122
,
034107
(
2005
).
35.
J.
Gauss
,
M.
Kállay
, and
F.
Neese
,
J. Phys. Chem. A
113
,
11541
(
2009
).
36.
F.
Neese
,
Int. J. Quantum Chem.
83
,
104
(
2001
).
37.
38.
A.
Perera
,
J.
Gauss
,
P.
Verma
, and
J. A.
Morales
,
J. Chem. Phys.
146
,
164104
(
2017
).
39.
O.
Vahtras
,
B.
Minaev
, and
H.
Ågren
,
Chem. Phys. Lett.
281
,
186
(
1997
).
40.
G.
Lushington
and
F.
Grein
,
J. Chem. Phys.
106
,
3292
(
1997
).
41.
G. H.
Lushington
,
J. Phys. Chem. A
104
,
2969
(
2000
).
42.
S.
Brownridge
,
F.
Grein
,
J.
Tatchen
,
M.
Kleinschmidt
, and
C. M.
Marian
,
J. Chem. Phys.
118
,
9552
(
2003
).
44.
E. R.
Sayfutyarova
and
G. K.-L.
Chan
,
J. Chem. Phys.
148
,
184103
(
2018
).
45.
E.
van Lenthe
,
P. E.
Wormer
, and
A.
van der Avoird
,
J. Chem. Phys.
107
,
2488
(
1997
).
46.
K. M.
Neyman
,
D. I.
Ganyushin
,
A. V.
Matveev
, and
V. A.
Nasluzov
,
J. Phys. Chem. A
106
,
5022
(
2002
).
47.
P.
Manninen
,
J.
Vaara
, and
K.
Ruud
,
J. Chem. Phys.
121
,
1258
(
2004
).
48.
I.
Malkin
,
O. L.
Malkina
,
V. G.
Malkin
, and
M.
Kaupp
,
J. Chem. Phys.
123
,
244103
(
2005
).
49.
M.
Repiskỳ
,
S.
Komorovskỳ
,
E.
Malkin
,
O. L.
Malkina
, and
V. G.
Malkin
,
Chem. Phys. Lett.
488
,
94
(
2010
).
50.
M.
Glasbrenner
,
S.
Vogler
, and
C.
Ochsenfeld
,
J. Chem. Phys.
148
,
214101
(
2018
).
51.
S.
Koseki
,
M. W.
Schmidt
, and
M. S.
Gordon
,
J. Phys. Chem.
96
,
10768
(
1992
).
52.
H. F.
King
and
T. R.
Furlani
,
J. Comput. Chem.
9
,
771
(
1988
).
53.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Phys.
127
,
054103
(
2007
).
54.
M.
Beer
and
C.
Ochsenfeld
,
J. Chem. Phys.
128
,
221102
(
2008
).
55.
P. Y.
Ayala
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
3660
(
1999
).
56.
C.
Ochsenfeld
,
C. A.
White
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
1663
(
1998
).
57.
C.
Ochsenfeld
,
Chem. Phys. Lett.
327
,
216
(
2000
).
58.
F. G.
Gustavson
,
ACM Trans. Math. Software
4
,
250
(
1978
).
59.
E.
Cuthill
and
J.
McKee
, in
Proceedings of the 1969 24th National Conference
(
ACM
,
1969
), pp.
157
172
.
60.
M.
Beer
,
J.
Kussmann
, and
C.
Ochsenfeld
,
J. Chem. Phys.
134
,
074102
(
2011
).
61.
C. A.
White
,
B. G.
Johnson
,
P. M.
Gill
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
230
,
8
(
1994
).
62.
C. A.
White
,
B. G.
Johnson
,
P. M.
Gill
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
253
,
268
(
1996
).
63.
M.
Häser
and
R.
Ahlrichs
,
J. Comput. Chem.
10
,
104
(
1989
).
64.
M.
Häser
,
Theor. Chim. Acta
87
,
147
(
1993
).
65.
S. A.
Maurer
,
D. S.
Lambrecht
,
D.
Flaig
, and
C.
Ochsenfeld
,
J. Chem. Phys.
136
,
144107
(
2012
).
66.
A.
Luenser
,
J.
Kussmann
, and
C.
Ochsenfeld
,
J. Chem. Phys.
145
,
124103
(
2016
).
67.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Phys.
138
,
134114
(
2013
).
68.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Theory Comput.
11
,
918
(
2015
).
69.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Theory Comput.
13
,
3153
(
2017
).
70.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
71.
P.
Pulay
,
J. Comput. Chem.
3
,
556
(
1982
).
72.
K.
Kim
and
K.
Jordan
,
J. Phys. Chem.
98
,
10089
(
1994
).
73.
V. I.
Lebedev
,
USSR Comput. Math. Math. Phys.
16
,
10
(
1976
).
74.
O.
Treutler
and
R.
Ahlrichs
,
J. Chem. Phys.
102
,
346
(
1995
).
75.
M.
Kaltak
,
J.
Klimeš
, and
G.
Kresse
,
J. Chem. Theory Comput.
10
,
2498
(
2014
).
76.
A.
Takatsuka
,
S.
Ten-No
, and
W.
Hackbusch
,
J. Chem. Phys.
129
,
044112
(
2008
).
77.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
78.
H.
Kruse
and
S.
Grimme
,
J. Chem. Phys.
136
,
154101
(
2012
).
79.
R.
Sure
and
S.
Grimme
,
J. Comput. Chem.
34
,
1672
(
2013
).
80.
J.
Kästner
,
J. M.
Carr
,
T. W.
Keal
,
W.
Thiel
,
A.
Wander
, and
P.
Sherwood
,
J. Phys. Chem. A
113
,
11856
(
2009
).
81.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
82.
J.
Stone
, “
An efficient library for parallel ray tracing and animation
,” M.S. thesis,
Computer Science Department, University of Missouri-Rolla
,
1998
.
83.
S.
Vogler
,
G.
Savasci
,
M.
Ludwig
, and
C.
Ochsenfeld
,
J. Chem. Theory Comput.
14
,
3014
(
2018
).
84.
G. E.
Fanucci
and
D. S.
Cafiso
,
Curr. Opin. Struct. Biol.
16
,
644
(
2006
).
85.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
86.
E.
Pauwels
,
J.
Asher
,
M.
Kaupp
, and
M.
Waroquier
,
Phys. Chem. Chem. Phys.
13
,
18638
(
2011
).
87.
D. M.
Ramo
,
A.
Shluger
,
J.
Gavartin
, and
G.
Bersuker
,
Phys. Rev. Lett.
99
,
155504
(
2007
).
88.
B.
Brogioni
,
D.
Biglino
,
A.
Sinicropi
,
E. J.
Reijerse
,
P.
Giardina
,
G.
Sannia
,
W.
Lubitz
,
R.
Basosi
, and
R.
Pogni
,
Phys. Chem. Chem. Phys.
10
,
7284
(
2008
).
You do not currently have access to this content.