Clathrate hydrates are crystalline compounds consisting of water molecules forming cages (so-called “host”) inside of which “guest” molecules are encapsulated depending on the thermodynamic conditions of formation (systems stable at low temperature and high pressure). These icelike systems are naturally abundant on Earth and are generally expected to exist on icy celestial bodies. Carbon monoxide hydrate might be considered an important component of the carbon cycle in the solar system since CO gas is one of the predominant forms of carbon. Intriguing fundamental properties have also been reported: the CO hydrate initially forms in the sI structure (kinetically favored) and transforms into the sII structure (thermodynamically stable). Understanding and predicting the gas hydrate structural stability then become essential. The aim of this work is, thereby, to study the structural and energetic properties of the CO hydrate using density functional theory (DFT) calculations together with neutron diffraction measurements. In addition to the comparison of DFT-derived structural properties with those from experimental neutron diffraction, the originality of this work lies in the DFT-derived energy calculations performed on a complete unit cell (sI and sII) and not only by considering guest molecules confined in an isolated water cage (as usually performed for extracting the binding energies). Interestingly, an excellent agreement (within less than 1% error) is found between the measured and DFT-derived unit cell parameters by considering the Perdew-Burke-Ernzerhof (denoted PBE) functional. Moreover, a strategy is proposed for evaluating the hydrate structural stability on the basis of potential energy analysis of the total nonbonding energies (i.e., binding energy and water substructure nonbonding energy). It is found that the sII structure is the thermodynamically stable hydrate phase. In addition, increasing the CO content in the large cages has a stabilizing effect on the sII structure, while it destabilizes the sI structure. Such findings are in agreement with the recent experimental results evidencing the structural metastability of the CO hydrate.

1.
Alavi
,
S.
,
Susilo
,
R.
, and
Ripmeester
,
J. A.
, “
Linking microscopic guest properties to macroscopic observables in clathrate hydrates: Guest-host hydrogen bonding
,”
J. Chem. Phys.
130
,
174501
(
2009
).
2.
Bedouret
,
L.
,
Judeinstein
,
P.
,
Ollivier
,
J.
,
Combet
,
J.
, and
Desmedt
,
A.
, “
Proton diffusion in the hexafluorophosphoric acid clathrate hydrate
,”
J. Phys. Chem. B
118
,
13357
13364
(
2014
).
3.
Belosludov
,
R. V.
,
Subbotin
,
O. S.
,
Mizuseki
,
H.
,
Kawazoe
,
Y.
, and
Belosludov
,
V. R.
, “
Accurate description of phase diagram of clathrate hydrates at the molecular level
,”
J. Chem. Phys.
131
,
244510
(
2009
).
4.
Birch
,
F.
, “
Finite elastic strain of cubic crystals
,”
Phys. Rev.
71
,
809
824
(
1947
).
5.
Bloöch
,
P. E.
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
6.
Broseta
,
D.
,
Ruffine
,
L.
, and
Desmedt
,
A.
(Eds.),
Gas Hydrates 1: Fundamentals, Characterization and Modeling
(
Wiley-ISTE
,
London, UK
,
2017
).
7.
Burke
,
K.
, “
Perspective on density functional theory
,”
J. Chem. Phys.
136
,
150901
(
2012
).
8.
Chakraborty
,
S. N.
and
English
,
N. J.
, “
Hydrogen-bond vibrational and energetic dynamical properties in sI and sII clathrate hydrates and in ice Ih: Molecular dynamic insights
,”
J. Chem. Phys.
143
,
154504
(
2015
).
9.
Choukroun
,
M.
,
Grasset
,
O.
,
Tobie
,
G.
, and
Sotin
,
C.
, “
Stability of the methane clathrate hydrates under pressure: Influence on outgassing processes of methane on Titan
,”
Icarus
205
,
581
593
(
2010
).
10.
Choukroun
,
M.
,
Kieffer
,
S.
,
Lu
,
X.
, and
Tobie
,
G.
, “
Clathrate hydrates: Implication for exchange processes in the outer solar system
,” in
Science of Solar Systeme Ices
, Astrophysics and Space Science Library, 3rd ed., edited by
Gudipati
,
S. M.
and
Castillo-Rogez
,
J. C.
(
Springer
,
New York, NJ
,
2013
), Vol. 356, pp.
409
454
.
11.
Cox
,
S. J.
,
Towler
,
M. D.
,
Alfè
,
D.
, and
Michaelides
,
A.
, “
Benchmarking the performance of density functional theory and point charge force fields in their description of sI methane hydrate against diffusion Monte Carlo
,”
J. Chem. Phys.
140
,
174703
(
2014
).
12.
Dartois
,
E.
, “
CO clathrate hydrate: Near to mid-IR spectroscopic signatures
,”
Icarus
212
,
950
956
(
2011
).
13.
Davidson
,
D. W.
,
Desando
,
M. A.
,
Gough
,
S. R.
,
Handa
,
Y. P.
,
Ratcliffe
,
C. L.
,
Ripmeester
,
J. A.
, and
Tse
,
J. S.
, “
A clathrate hydrate of carbon monoxide
,”
Nature
328
,
418
419
(
1987
).
14.
Desando
,
M. A.
,
Handa
,
Y. P.
,
Hawkins
,
R. E.
,
Ratcliffe
,
C. I.
, and
Ripmeester
,
J. A.
, “
Dielectric and 13C NMR studies of the carbon monoxide clathrate hydrate
,”
J. Inclusion Phenom. Mol. Recognit. Chem.
8
,
3
16
(
1990
).
15.
Desmedt
,
A.
,
Bedouret
,
L.
,
Pefoute
,
E.
,
Pouvreau
,
M.
,
Say-Liang-Fat
,
S.
, and
Alvarez
,
M.
, “
Energy landscape of clathrate hydrates
,”
Eur. Phys. J.: Spec. Top.
213
,
103
127
(
2012
).
16.
Desmedt
,
A.
,
Lechner
,
R. E.
,
Lassègues
,
J. C.
,
Guillaume
,
F.
,
Cavagnat
,
D.
, and
Grondin
,
J.
, “
Hydronium dynamics in the perchloric acid clathrate hydrate
,”
Solid State Ionics
252
,
19
25
(
2013
).
17.
Desmedt
,
A.
,
Martin-Gondre
,
L.
,
Nguyen
,
T. T.
,
Pétuya
,
C.
,
Barandiaran
,
L.
,
Babot
,
O.
,
Toupance
,
T.
,
Grim
,
R. G.
, and
Sum
,
A. K.
, “
Modifying the flexibility of water cages by co-including acidic species within clathrate hydrates
,”
J. Phys. Chem. C
119
,
8904
8911
(
2015
).
18.
Desmedt
,
A.
,
Soetens
,
J. C.
,
Prager
,
M.
,
Russina
,
M.
, and
Ollivier
,
J.
, “
Dynamics of methyl iodide clathrate hydrate, investigated by md simulations and QENS experiments
,”
J. Phys. Chem. C
115
,
12689
(
2011
).
19.
Desmedt
,
A.
,
Stallmach
,
F.
,
Lechner
,
R. E.
,
Cavagnat
,
D.
,
Lassègues
,
J. C.
,
Guillaume
,
F.
,
Grondin
,
J.
, and
Gonzalez
,
M. A.
, “
Proton dynamics in the perchloric acid clathrate hydrate HClO4·5.5H2O
,”
J. Chem. Phys.
121
(
23
),
11916
11926
(
2004
).
20.
Dion
,
M.
,
Rydberg
,
H.
,
Schröder
,
E.
,
Langreth
,
D. C.
, and
Lundqvist
,
B. I.
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
21.
English
,
N. J.
and
MacElroy
,
J. M. D.
, “
Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges
,”
Chem. Eng. Sci.
121
,
133
(
2015
).
22.
Frankcombe
,
T. J.
and
Kroes
,
G.-J.
, “
A new method for screening potential sII and sH hydrogen clathrate hydrate promoters with model potentials
,”
Phys. Chem. Chem. Phys.
13
,
13410
(
2011
).
23.
Gillan
,
M. J.
,
Alfè
,
D.
, and
Michaelides
,
A.
, “
Perspective: How good is DFT for water?
,”
J. Chem. Phys.
144
,
130901
(
2016
).
24.
Hammerschmidt
,
E. G.
, “
Formation of gas hydrates in natual gas transmission lines
,”
Ind. Eng. Chem.
26
,
851
855
(
1934
).
25.
Hester
,
K. C.
,
Huo
,
Z.
,
Ballard
,
A. L.
,
Koh
,
C. A.
,
Miller
,
K. T.
, and
Sloan
,
E. D.
, “
Thermal expansivity for sI and sII clathrate hydrates
,”
J. Phys. Chem. B
111
,
8830
8835
(
2007
).
26.
Hiratsuka
,
M.
,
Ohmura
,
R.
,
Sum
,
A. K.
,
Alavi
,
S.
, and
Yasukoa
,
K.
, “
A molecular dynamics study of guest-host hydrogen bonding in alcohol clathrate hydrates
,”
Phys. Chem. Chem. Phys.
17
,
12639
(
2015
).
27.
Kieffer
,
S. W.
,
Lu
,
X.
,
Bethke
,
C. M.
,
Spencer
,
J. R.
,
Marshak
,
S.
, and
Navrotsky
,
A.
, “
A clathrate reservoir hypothesis for Enceladus south polar plume
,”
Science
314
,
1764
1766
(
2006
).
28.
Klimes
,
J.
and
Michaelides
,
A.
, “
Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory
,”
J. Chem. Phys.
137
,
120901
(
2012
).
29.
Klobes
,
B.
,
Desmedt
,
A.
,
Sergueev
,
I.
,
Schmalzl
,
K.
, and
Hermann
,
R. P.
, “
129Xe nuclear resonance scattering on solid Xe and 129Xe clathrate hydrate
,”
Europhys. Lett.
103
,
36001
(
2013
).
30.
Kolb
,
B.
and
Thonhauser
,
T.
, “
van der Waals density functional study of energetic, structural, and vibrational properties of small water clusters and ice Ih
,”
Phys. Rev. B
84
,
045116
(
2011
).
31.
Kresse
,
G.
and
Furthmuller
,
J.
, “
Efficient of ab initio total energy calculations for metals and semi-conductors using plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996a
).
32.
Kresse
,
G.
and
Furthmuller
,
J.
, “
Efficient iterative scheme for ab initio total-energy calculations using plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996b
).
33.
Kresse
,
G.
and
Hafner
,
J.
, “
Ab initio molecular dynamics for liquid metal
,”
Phys. Rev. B
47
,
558
561
(
1993a
).
34.
Kresse
,
G.
and
Hafner
,
J.
, “
Ab initio molecular dynamics for open-shell transition metals
,”
Phys. Rev. B
48
,
13115
13118
(
1993b
).
35.
Kresse
,
G.
and
Joubert
,
J.
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
36.
Kumar
,
P.
,
Mishra
,
B. K.
, and
Sathyamurthy
,
N.
, “
Density functional theoretic studies of host-guest interaction in gas hydrates
,”
Comput. Theor. Chem.
1029
,
26
(
2014
).
37.
Le Bail
,
A.
, in
Accuracy in Powder Diffraction II: Proceedings of the International Conference May 26–29
, edited by
Prince
,
E.
and
Stalick
,
J. K.
(
NIST Special Publication
,
1992
), Vol. 846, pp.
142
153
.
38.
Lewis
,
J. S.
and
Prinn
,
R. G.
, “
Kinetic inhibition of CO and N2 reduction in the solar Nebula
,”
Astrophys. J.
238
,
357
364
(
1980
).
39.
Li
,
Q.
,
Kolb
,
B.
,
Roman-Perez
,
G.
,
Soler
,
J. M.
,
Yndurain
,
F.
,
Kong
,
L.
,
Langreth
,
D. C.
, and
Thonhauser
,
T.
, “
Ab initio energetics and kinetics study of H2 and CH4 in the SI clathrate hydrate
,”
Phys. Rev. B
84
,
153103
(
2011
).
40.
Loveday
,
J. S.
,
Nelmes
,
R. J.
,
Gurthie
,
M.
,
Belmonte
,
S. A.
,
Allan
,
D. R.
,
Klug
,
D. D.
,
Tse
,
J. S.
, and
Handa
,
Y. P.
, “
Stable methane hydrate abobe 2GPa and the source of Titan’s atmospheric methane
,”
Nature
410
,
661
663
(
2001
).
41.
Lunine
,
J. I.
and
Stevenson
,
D. J.
, “
Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system
,”
Astrophys. J.
58
,
493
531
(
1985
).
42.
Martin-Gondre
,
L.
,
Juaristi
,
J. I.
,
Blanc-Rey
,
M.
,
Díez Muiño
,
R.
, and
Alducin
,
M.
, “
Influence of the van der Waals interaction in the dissociation dynamics of N2 on W(110) from first principles
,”
J. Chem. Phys.
142
,
074704
(
2015
).
43.
Miller
,
S. L.
, “
The occurrence of gas hydrates in the solar system
,”
Proc. Natl. Acad. Sci. U. S. A.
47
,
1798
1808
(
1961
).
44.
Munoz-Iglesias
,
M. V.
,
Choukroun
,
M.
,
Vu
,
T. H.
,
Hodyss
,
R.
,
Mahjoub
,
A.
,
Smythe
,
W. D.
, and
Sotin
,
C.
, “
Phase diagram of the ternary water-tetrahydrofuran-ammonia system at low temperatures. Implications for clathrate hydrates and outgassing on titan
,”
ACS Earth Space Chem.
2
,
135
146
(
2018
).
45.
Pefoute
,
E.
,
Kemner
,
E.
,
Soetens
,
J. C.
,
Russina
,
M.
, and
Desmedt
,
A.
, “
Diffusive motions of molecular hydrogen confined in THF clathrate hydrate
,”
J. Phys. Chem. C
116
,
16823
(
2012
).
46.
Pefoute
,
E.
,
Martin-Gondre
,
L.
,
Ollivier
,
J.
,
Soetens
,
J. C.
,
Russina
,
M.
, and
Desmedt
,
A.
, “
Modeling the THF clathrate hydrate dynamics by combining molecular dynamics and quasi-elastic neutron scattering
,”
Chem. Phys.
496
,
24
34
(
2017
).
47.
Pefoute
,
E.
,
Prager
,
M.
,
Russina
,
M.
, and
Desmedt
,
A.
, “
Quasi-elastic neutron scattering investigation of the guest molecule dynamics in the bromomethane clathrate hydrate
,”
Fluid Phase Equilib.
413
,
116
122
(
2016
).
48.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
49.
Petuya
,
C.
,
Damay
,
F.
,
Chazallon
,
B.
,
Bruneel
,
J.-L.
, and
Desmedt
,
A.
, “
Guest partitioning and metastability of the nitrogen gas hydrate
,”
J. Phys. Chem. C
122
,
566
573
(
2018a
).
50.
Petuya
,
C.
,
Damay
,
F.
,
Desplanche
,
S.
,
Aupetit
,
C.
, and
Desmedt
,
A.
, “
Ageing and Langmuir behavior of the cage occupancy in the nitrogen gas hydrate
,”
Crystals
8
,
145
(
2018b
).
51.
Petuya
,
C.
,
Damay
,
F.
,
Talaga
,
D.
, and
Desmedt
,
A.
, “
Guest partitioning in carbon monoxide by Raman spectroscopy
,”
J. Phys. Chem. C
121
,
13798
13802
(
2017
).
52.
Petuya
,
C.
,
Damay
,
F.
,
Talaga
,
D.
, and
Desmedt
,
A.
, “
Guest partitioning in carbon monoxide by Raman spectroscopy
,”
Chem. Commun.
54
,
4290
4293
(
2018c
).
53.
Prager
,
M.
,
Baumert
,
J.
,
Press
,
W.
,
Plazanet
,
M.
,
Tse
,
J. S.
, and
Klug
,
D. D.
, “
Adsorption sites and rotational tunneling of methyl groups in cubic I methyl fluoride water clathrate
,”
Phys. Chem. Chem. Phys.
7
,
1228
1234
(
2005
).
54.
Prager
,
M.
,
Desmedt
,
A.
,
Allgaier
,
J.
,
Russina
,
M.
,
Jansen
,
E.
,
Natkaniecz
,
I.
,
Pawlukojc
,
A.
, and
Press
,
W.
, “
Methyl group rotation and whole molecule dynamics in methyl bromide hydrate
,”
Phase Transitions
80
,
473
488
(
2007
).
55.
Prager
,
M.
,
Desmedt
,
A.
,
Unruh
,
T.
, and
Algaier
,
J.
, “
Dynamics and adsorption sites for guest molecules in methyl chloride hydrate
,”
J. Phys.: Condens. Matter
20
,
125219
(
2008
).
56.
Prager
,
M.
,
Pieper
,
J.
,
Buchsteiner
,
A.
, and
Desmedt
,
A.
, “
Probing adsorption sites in a cubic II water clathrate cage by methyl group rotation of CH3I guest molecules
,”
J. Phys.: Condens. Matter
16
,
7045
7061
(
2004
).
57.
Prasad
,
P. S. R.
,
Prasad
,
K. S.
, and
Thakur
,
N. K.
, “
Laser Raman spectroscopy of THF clathrate hydrate in the temperature range 90–300 K
,”
Spectrochim. Acta, Part A
68
,
1096
1100
(
2007
).
58.
Ramya
,
K. R.
and
Venkatnathan
,
A.
, “
Stability and reactivity of methane clathrate hydrates: Insights from density functional theory
,”
J. Phys. Chem. A
116
,
7742
(
2012
).
59.
Rodriguez-Carvajal
,
J.
, “
In FULLPROF: A program for Rietveld refinement and pattern matching analysis
,” in
Proceeding of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr
,
France, Toulouse
,
1990
.
60.
Román-Pérez
,
G.
,
Moaied
,
M.
,
Soler
,
J. M.
, and
Yndurain
,
F.
, “
Stability, adsorption, and diffusion of CH4, CO2 and H2 in clathrate hydrates
,”
Phys. Rev. Lett.
105
,
145901
(
2010
).
61.
Ruffine
,
L.
,
Broseta
,
D.
, and
Desmedt
,
A.
(Eds.),
Gas Hydrates 2: Geosciences and Applications
(
Wiley-ISTE
,
London, UK
,
2018
).
62.
Santra
,
B.
,
Klimes
,
J.
,
Tkatchenko
,
A.
,
Alfè
,
D.
,
Slater
,
B.
,
Michaelides
,
A.
,
Car
,
R.
, and
Scheffler
,
M.
, “
On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures
,”
J. Chem. Phys.
139
,
154702
(
2013
).
63.
Shin
,
K.
,
Kumar
,
R.
,
Udachin
,
K. A.
,
Alavi
,
S.
, and
Ripmeester
,
J. A.
, “
Ammonia clathrate hydrates as new solid phases for titan, Enceladus, and other planetary systems
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
14785
14790
(
2012
).
64.
Sloan
,
E. D.
and
Koh
,
C. A.
,
Clathrate Hydrates of Natural Gases
, 3rd ed. (
Taylor & Francis-CRC Press
,
Boca Raton, FL
,
2008
).
65.
Stackelberg
,
M. V.
and
Müller
,
H. R.
, “
Feste gas hydrate II: Struktur und raumchemire
,”
Zeit. Elektrochem.
58
,
25
39
(
1954
).
66.
Udachin
,
K. A.
,
Ratcliffe
,
C. I.
, and
Ripmeester
,
J. A.
, “
Structure, composition and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements
,”
J. Phys. Chem. B
105
,
4200
4204
(
2001
).
67.
Van Cleeff
,
A.
and
Diepen
,
G. A. M.
, “
Gas hydrates of nitrogen and oxygen
,”
Recl. Trav. Chim. Pays-Bas
79
,
582
586
(
1960
).
68.
Van Cleeff
,
A.
and
Diepen
,
G. A. M.
, “
Gas hydrates of nitrogen and oxygen II
,”
Recl. Trav. Chim. Pays-Bas
84
,
1085
1093
(
1965
).
69.
Wang
,
J.
,
Roman-Perez
,
G.
,
Soler
,
J. M.
,
Artacho
,
E.
, and
Fernandez-Serra
,
M.-V.
, “
Density, structure, and dynamics of water: The effect of van der Waals interactions
,”
J. Chem. Phys.
134
,
024516
(
2011
).
70.
Zhu
,
J.
,
Du
,
S.
,
Yu
,
X.
,
Zhang
,
J.
,
Xu
,
H.
,
Vogel
,
S. C.
,
Germann
,
T. C.
,
Francisco
,
J. S.
,
Izumi
,
F.
,
Momma
,
K.
,
Kawamura
,
Y.
,
Jin
,
C.
, and
Zhao
,
Y.
, “
Encapsulation kinetics and dynamics of carbon monoxide in clathrate hydrate
,”
Nat. Commun.
5
,
4128
(
2014
).

Supplementary Material

You do not currently have access to this content.