We show here results of four-component calculations of nuclear magnetic resonance σ for atoms with 10 ≤ Z ≤ 86 and their ions, within the polarization propagator formalism at its random phase level of approach, and the first estimation of quantum electrodynamic (QED) effects and Breit interactions of those atomic systems by using two theoretical effective models. We also show QED corrections to σ(X) in simple diatomic HX and X2 (X = Br, I, At) molecules. We found that the Z dependence of QED corrections in bound-state many-electron systems is proportional to Z5, which is higher than its dependence in H-like systems. The analysis of relativistic ee (or paramagneticlike) and pp (or diamagneticlike) terms of σ exposes two different patterns: the pp contribution arises from virtual electron-positron pair creation/annihilation and the ee contribution is mainly given by 1sns and 2sns excitations. The QED effects on shieldings have a negative sign, and their magnitude is larger than 1% of the relativistic effects for high-Z atoms such as Hg and Rn, and up to 0.6% of its total four-component value for neutral Rn. Furthermore, percentual contributions of QED effects to the total shielding are larger for ionized than for neutral atoms. In a molecule, the contribution of QED effects to σ(X) is determined by its highest-Z atoms, being up to −0.6% of its total σ value for astatine compounds. It is found that QED effects grow faster than relativistic effects with Z.

1.
Calculation of NMR and EPR Parameters: Theory and Applications
, edited by
M.
Kaupp
,
M.
Bühl
, and
V. G.
Malkin
(
Wiley VCH
,
Weinheim
,
2004
).
2.
J.
Vaara
,
Phys. Chem. Chem. Phys.
9
,
5399
(
2007
).
3.
High resolution NMR spectroscopy: Understanding molecules and their electronic structures
,” in
Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems
, edited by
R. H.
Contreras
(
Elsevier
,
2013
).
4.
Y. Y.
Rusakov
and
L. B.
Krivdin
,
Russ. Chem. Rev.
82
,
99
(
2013
).
5.
L.
Visscher
,
T.
Enevoldsen
,
T.
Saue
,
H. J. A.
Jensen
, and
J.
Oddershede
,
J. Comput. Chem.
20
,
1262
(
1999
).
6.
G. A.
Aucar
,
R. H.
Romero
, and
A. F.
Maldonado
,
Int. Rev. Phys. Chem.
29
,
1
(
2010
).
7.
I. A.
Aucar
,
C. A.
Giménez
, and
G. A.
Aucar
,
RSC Adv.
8
,
20234
(
2018
).
8.
D.
Andrae
, “
Nuclear charge density and magnetization distributions
,” in
Handbook of Relativistic Quantum Chemistry
, edited by
W.
Liu
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2017
), pp.
51
81
.
9.
P.
Indelicato
and
P. J.
Mohr
, “
Introduction to bound-state quantum electrodynamics
,” in
Handbook of Relativistic Quantum Chemistry
, edited by
W.
Liu
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2017
), pp.
131
243
.
10.
A. F.
Maldonado
,
C. A.
Giménez
, and
G. A.
Aucar
,
J. Chem. Phys.
136
,
224110
(
2012
).
11.
R. H.
Romero
and
G. A.
Aucar
,
Int. J. Mol. Sci.
3
,
914
(
2002
).
12.
R. H.
Romero
and
G. A.
Aucar
,
Phys. Rev. A: At., Mol., Opt. Phys.
65
,
053411
(
2002
).
13.
A.
Rudziński
,
M.
Puchalski
,
K.
Pachucki
,
A.
Rudziński
,
M.
Puchalski
, and
K.
Pachucki
,
J. Chem. Phys.
130
,
244102
(
2009
).
14.
V. A.
Yerokhin
,
K.
Pachucki
,
Z.
Harman
, and
C. H.
Keitel
,
Phys. Rev. Lett.
107
,
043004
(
2011
).
15.
V. A.
Yerokhin
,
K.
Pachucki
,
Z.
Harman
, and
C. H.
Keitel
,
Phys. Rev. A: At., Mol., Opt. Phys.
85
,
022512
(
2012
).
16.
P.
Pyykkö
and
L.-B.
Zhao
,
J. Phys. B: At., Mol. Opt. Phys.
36
,
1469
(
2003
).
17.
V. M.
Shabaev
,
Phys. Rep.
356
,
119
(
2002
).
18.
I.
Lindgren
,
S.
Salomonson
, and
B.
Åsén
,
Phys. Rep.
389
,
161
(
2004
).
19.
K. G.
Dyall
,
J. Chem. Phys.
139
,
021103
(
2013
).
20.
I.
Lindgren
and
P.
Indelicato
, “
Unifying many-body perturbation theory with quantum electrodynamics
,” in
Handbook of Relativistic Quantum Chemistry
, edited by
W.
Liu
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2017
), pp.
313
341
.
21.
V. M.
Shabaev
,
I. I.
Tupitsyn
, and
V. A.
Yerokhin
,
Comput. Phys. Commun.
223
,
69
(
2018
).
22.
G. A.
Aucar
,
Phys. Chem. Chem. Phys.
16
,
4420
(
2014
).
23.
C. A.
Giménez
,
K.
Kozioł
, and
G. A.
Aucar
,
Phys. Rev. A: At., Mol., Opt. Phys.
93
,
032504
(
2016
).
24.
J. A.
Lowe
,
C. T.
Chantler
, and
I. P.
Grant
,
Radiat. Phys. Chem.
85
,
118
(
2013
).
25.
K.
Kozioł
,
C. A.
Giménez
, and
G. A.
Aucar
,
J. Chem. Phys.
148
,
044113
(
2018
).
26.
M.
Kubiszewski
,
W.
Makulski
, and
K.
Jackowski
,
J. Mol. Struct.
737
,
7
(
2005
).
27.
K.
Jackowski
,
M.
Jaszuński
, and
M.
Wilczek
,
J. Phys. Chem. A
114
,
2471
(
2010
).
28.
M.
Jaszuński
,
A.
Antušek
,
P.
Garbacz
,
K.
Jackowski
,
W.
Makulski
, and
M.
Wilczek
,
Prog. Nucl. Magn. Reson. Spectrosc.
67
,
49
(
2012
).
29.
B.
Adrjan
,
W.
Makulski
,
K.
Jackowski
,
T. B.
Demissie
,
K.
Ruud
,
A.
Antušek
, and
M.
Jaszuński
,
Phys. Chem. Chem. Phys.
18
,
16483
(
2016
).
30.
G. A.
Aucar
,
T.
Saue
,
L.
Visscher
, and
H. J. A.
Jensen
,
J. Chem. Phys.
110
,
6208
(
1999
).
31.
T.
Saue
and
H. J. A.
Jensen
,
J. Chem. Phys.
118
,
522
(
2003
).
32.
E. A.
Moore
,
Mol. Phys.
97
,
375
(
1999
).
33.
N. C.
Pyper
,
Mol. Phys.
97
,
381
(
1999
).
34.
W. R.
Johnson
and
G.
Soff
,
At. Data Nucl. Data Tables
33
,
405
(
1985
).
35.
K.
Kozioł
and
G. A.
Aucar
,
J. Chem. Phys.
148
,
134101
(
2018
).
36.
H. A.
Bethe
,
Phys. Rev.
72
,
339
(
1947
).
37.
P.
Indelicato
and
J.
Desclaux
, MCDFGME, a multiconfiguration Dirac-Fock and General Matrix Elements program (release 2005), http://dirac.spectro.jussieu.fr/mcdf.
38.
J. P.
Desclaux
,
Comput. Phys. Commun.
35
,
C
(
1984
).
39.
Relativistic Quantum Theory of Atoms and Molecules
, Springer Series on Atomic, Optical, and Plasma Physics, edited by
I. P.
Grant
(
Springer
,
New York, NY
,
2007
), Vol. 40.
40.
O.
Gorceix
,
P.
Indelicato
, and
J.-P.
Desclaux
,
J. Phys. B: At., Mol. Phys.
20
,
639
(
1987
).
41.
G.
Breit
,
Phys. Rev.
34
,
553
(
1929
).
42.
E. A.
Uehling
,
Phys. Rev.
48
,
55
(
1935
).
43.
L. W.
Fullerton
and
G. A.
Rinker
,
Phys. Rev. A
13
,
1283
(
1976
).
44.
DIRAC, a relativistic ab initio electronic structure program, Release DIRAC17 (
2017
), written by
L.
Visscher
,
H. J. Aa.
Jensen
,
R.
Bast
, and
T.
Saue
, with contributions from
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
E.
Faßhauer
,
T.
Fleig
,
O.
Fossgaard
,
A. S. P.
Gomes
,
E. D.
Hedegård
,
T.
Helgaker
,
J.
Henriksson
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
J. K.
Lærdahl
,
C. V.
Larsen
,
Y. S.
Lee
,
H. S.
Nataraj
,
M. K.
Nayak
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
J. M. H.
Olsen
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
R.
di Remigio
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
A.
Shee
,
J.
Sikkema
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
(see http://www.diracprogram.org).
45.
L.
Visscher
and
K. G.
Dyall
,
At. Data Nucl. Data Tables
67
,
207
(
1997
).
46.
K. G.
Dyall
,
Theor. Chem. Acc.
135
,
128
(
2016
).
47.
K. G.
Dyall
,
Theor. Chem. Acc.
115
,
441
(
2006
).
48.
K. G.
Dyall
and
A. S. P.
Gomes
, available from the Dirac web site, http://www.diracprogram.org.
49.
K. G.
Dyall
,
Theor. Chem. Acc.
117
,
483
(
2007
).
50.
K. G.
Dyall
,
Theor. Chem. Acc.
112
,
403
(
2004
).
51.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
, 97th ed. (
CRC Press
,
2016
).
52.
W. E.
Lamb
,
Phys. Rev.
60
,
817
(
1941
).
53.
T.
Helgaker
,
M.
Jaszuński
, and
K.
Ruud
,
Chem. Rev.
99
,
293
(
1999
).
54.
W. H.
Flygare
,
Chem. Rev.
74
,
653
(
1974
).
55.
I. A.
Aucar
,
S. S.
Gomez
,
C. G.
Giribet
, and
G. A.
Aucar
,
Phys. Chem. Chem. Phys.
18
,
23572
(
2016
).
56.
I. A.
Aucar
,
S. S.
Gomez
,
C. G.
Giribet
, and
G. A.
Aucar
,
J. Phys. Chem. Lett.
7
,
5188
(
2016
).

Supplementary Material

You do not currently have access to this content.