We theoretically study dense polymer solutions under open (capillary and slit) and closed (box) confinement. The theory is formulated for grand-canonical polymers and corrections to the self-consistent mean-field results are discussed. In contrast to the mean-field prediction, we found that the partition function of a labeled chain is affected by confinement even under neutral von Neumann boundary conditions and the chain length distribution is biased to short chains. As the container size increases, the contribution of the transverse excited states to the free energy of a labeled chain is found to approach its bulk value nonmonotonically (through an extremum) for the box and the capillary confinement but not for the slit. So does the confinement free energy of a labeled chain. The confinement energy of the solution is well behaved for open confinement but formally diverges for a closed box in the limit that the average chain length goes to infinity. Counted per chain, the confinement energy of the dense solution is qualitatively weaker than for a single ideal chain under similarly strong confinement (by one power in transverse container size). The container boundary contributes a surface tension to the free energy, which makes the effective monomer-wall affinity more repulsive. This correction increases with the average chain length. If present, edge or vertex singularities also contribute to the grand potential of the solution.

1.
A. N.
Semenov
,
J.
Bonet-Avalos
,
A.
Johner
, and
J. F.
Joanny
, “
Adsorption of polymer solutions onto a flat surface
,”
Macromolecules
29
,
2179
2196
(
1996
).
2.
E. M.
Blokhuis
and
K. I.
Skau
, “
Free energy formalism for polymer adsorption
,”
J. Chem. Phys.
119
,
3483
3494
(
2003
).
3.
G. J.
Fleer
,
J.
van Male
, and
A.
Johner
, “
Analytical approximation of the Scheutjens-Fleer theory for polymer adsorption 1
,”
Macromolecules
32
,
825
(
1999
).
4.
G.
Fleer
,
M. C.
Stuart
,
J.
Scheutjens
,
T.
Cosgrove
, and
B.
Vincent
,
Polymers at Interfaces
(
Springer
,
London
,
1993
).
5.
J.
van der Gucht
,
N. A. M.
Besseling
, and
G. J.
Fleer
,
Macromolecules
37
,
3026
3036
(
2004
).
6.
E.
Nikomarov
and
S. P.
Obhukov
, “
Extended description of a solution of linear polymers based on a polymer-magnet analogy
,”
JETP
53
,
328
(
1981
).
7.
A. N.
Semenov
and
A.
Johner
, “
Theoretical notes on dense polymers in two dimensions
,”
Eur. Phys. J. E
12
,
469
(
2003
).
8.
S. P.
Obukhov
and
S. N.
Semonov
, “
Fluctuation-induced long-range interactions in polymer systems
,”
J. Phys.: Condens. Matter
17
,
S1747
(
2005
).
9.
N.
Lee
,
J.
Farago
,
H.
Meyer
,
J.
Wittmer
,
J.
Baschnagel
,
S.
Obukhov
, and
A.
Johner
, “
Non-ideality of polymer melts confined to nanotubes
,”
Europhys. Lett.
93
,
48002
(
2011
).
10.
A.
Johner
 et al., “
Two-dimensional polymer liquids and polymer stars: Learning from conflicting theories
,”
J. Stat. Mech.: Theory Exp.
2014
,
P04024
.
11.
M.
Daoud
 et al., “
Solutions of flexible polymers: Neutron experiments and interpretation
,”
Macromolecules
8
,
804
818
(
1975
).
12.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon Press
,
Oxford
,
1986
).
13.

There are also systems where the bare excluded volume is larger than at the fixed-point in which case short polymer sections, and likely the small scale ξ, are overswollen.14 This happens for flexible chains with strong excluded volume, so-called strong coupling limit, like polystyrene in toluene15 and is typical for standard algorithms in silico.16 In this case, MF never applies within scale ξ. In contrast, polystyrene in hexane17 is in the weak coupling regime.

14.
L.
Schäfer
,
Excluded Volume Effects in Polymer Solutions
(
Springer
,
Berlin
,
1999
).
15.
F.
Abe
,
Y.
Einaga
,
T.
Yoshizaki
, and
H.
Yamakawa
, “
Excluded-volume effects on the mean-square radius of gyration of oligo- and polystyrenes in dilute solutions
,”
Macromolecules
26
,
1884
(
1993
).
16.
M.
Müller
,
K.
Binder
, and
L.
Schäfer
, “
Intra and interchain correlations in semidilute polymer solutions: Monte Carlo simulations and renormalization group results
,”
Macromolecules
33
,
4568
4580
(
2000
).
17.
Y.
Miyaki
,
Y.
Einaga
, and
H.
Fujita
, “
Excluded-volume effects in dilute polymer solutions. 7. Very high molecular weight polystyrene in benzene and cyclohexane
,”
Macromolecules
11
,
1180
(
1978
).
18.
A.
Milchev
,
S. A.
Egorov
,
K.
Binder
, and
A.
Nikoubashman
, “
Nematic order in solutions of semiflexible polymers: Hairpins, elastic constants, and the nematic-smectic transition
,”
J. Chem. Phys.
149
,
174909
(
2018
).
19.
M.
Muthukumar
and
S. F.
Edwards
, “
Extrapolation formulas for polymer solution properties
,”
J. Chem. Phys.
76
,
2720
(
1982
).
20.
W.
Zhang
,
E. D.
Gomez
, and
S. T.
Milner
, “
Surface-induced chain alignment of semiflexible polymers
,”
Macromolecules
49
,
963
971
(
2016
).
21.
P. G.
de Genne
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaka, New York
,
1980
).
22.
A. D.
le Grand
and
D. G.
le Grand
, “
Small-angle x-ray scattering from block polymers. 3. Random phase approximation
,”
Macromolecules
12
,
450
454
(
1979
).
23.
N. K.
Lee
, and
A.
Johner
, “
Polymers grown in cavities: Vesicles and droplets
,”
J. Chem. Phys.
150
,
164905
(
2019
).
24.
M. E.
Cates
, “
Dynamics of living polymers and flexible surfactant micelles: Scaling laws for dilution
,”
J. Phys.
49
,
1593
1600
(
1988
).
25.

As was also found for Casimir effects by others.26 

26.
J.
Ambjorn
and
S.
Wolfram
, “
Properties of the vacuum. I. Mechanical and thermodynamic
,”
Ann. Phys.
147
,
1
32
(
1983
).
27.
Y.
Mao
,
M. E.
Cates
, and
H. N. W.
Lekkerkerker
, “
Depletion force in colloidal systems
,”
Physica A
222
,
10
24
(
1995
).
28.
F.
Brochard
and
P. G.
de Genne
, “
Conformations de polymères fondus dans des pores très petits
,”
J. Phys., Lett.
40
,
399
401
(
1979
).
29.
P.
Beckrich
, “
Corrélations des polymères linéaires en volume et aux interfaces
,” Ph.D. thesis,
Université Louis Pasteur
,
Strasbourg, France
,
2006
, p.
80
(in English); http://scd-theses.u-strasbg.fr/1281/01/Beckrich2006.pdf.
You do not currently have access to this content.