Thermoreversible gelation and liquid-liquid phase separation are theoretically studied for the gels of polyfunctional molecules (polymers) whose network junctions are formed by complexation of functional groups on the polymer chains with added metal ions. Phase diagrams on the polymer/ion/solvent concentration plane, including both sol-gel transition lines and liquid-liquid phase separation lines (spinodals), are derived as functions of the polymer functionality, molecular weight, maximum coordination number of ions, and temperature. Binding isotherms of ions are also calculated as functions of the ion concentration. Results of the calculated sol-gel transition lines are compared with our recent experimental data on gelation of star block and telechelic, acrylic copolymers cross-linked by iron ions. It is shown that, owing to reaction stoichiometry, there is an optimal ion concentration at which the solution gels for the lowest polymer concentration and also that a re-entrant sol phase appears in the ion concentrations higher than the optimal one. The effect of stepwise complex formation constants on the re-entrant phase is studied in detail.

1.
T.
Christensen
,
D. M.
Gooden
,
J. E.
Kung
, and
E. J.
Toone
,
J. Am. Chem. Soc.
125
,
7357
7366
(
2003
).
2.
M.-O. M.
Piepenbrock
,
G. O.
Lloyd
,
N.
Clarke
, and
J. W.
Steed
,
Chem. Rev.
110
,
1960
2004
(
2010
).
3.
E.
Pezron
,
A.
Ricard
,
F.
Lafuma
, and
R.
Audebert
,
Macromolecules
21
,
1121
1125
(
1988
).
4.
E.
Pezron
,
L.
Leibler
,
A.
Ricard
, and
R.
Audebert
,
Macromolecules
21
,
1126
1131
(
1988
).
5.
E.
Pezron
,
L.
Leibler
,
A.
Ricard
,
F.
Lafuma
, and
R.
Audebert
,
Macromolecules
22
,
1169
1174
(
1988
).
6.
E.
Pezron
,
L.
Leibler
, and
F.
Lafuma
,
Macromolecules
22
,
2656
2662
(
1988
).
7.
M.
Shibayama
,
H.
Yoshizawa
,
H.
Kurokawa
,
H.
Fujiwara
, and
S.
Nomura
,
Polymer
29
,
2066
2071
(
1988
).
8.
H.
Kurokawa
,
M.
Shibayama
,
T.
Ishimaru
,
S.
Nomura
, and
W.-L.
Wu
,
Polymer
33
,
2182
2188
(
1992
).
9.
G.
Keita
,
A.
Ricard
,
R.
Audebertt
,
E.
Pezron
, and
L.
Leibler
,
Polymer
36
,
49
54
(
1995
).
10.
M.
Shibayama
,
F.
Ikkai
,
R.
Moriwaki
, and
S.
Nomura
,
Macromolecules
27
,
1738
1743
(
1994
).
11.
M.
Shibayama
,
F.
Ikkai
, and
S.
Nomura
,
Macromolecules
27
,
6383
6388
(
1994
).
12.
H.
Yokoi
,
E.
Nomoto
, and
S.
Ikoma
,
J. Mater. Chem.
3
,
389
392
(
1993
).
13.
S.
Peng
,
J. C.
Selser
,
R.
Bogoslovov
, and
G.
Piet
,
J. Chem. Phys.
120
,
8841
8852
(
2004
).
14.
Y.
Nakagawa
,
Y.
Amano
,
S.
Nakasako
,
S.
Ohta
, and
T.
Ito
,
ACS Biomater. Sci. Eng.
1
,
914
918
(
2015
).
15.
Y.
Nakagawa
,
S.
Ohta
,
M.
Sugahara
,
M.
Okubo
,
A.
Yamada
, and
T.
Ito
,
Macromolecules
50
,
5539
5548
(
2017
).
16.
Y.
Nakagawa
, “
Development of ionically cross-linked hydrogels applicable to bioprinting
,” Ph.D. thesis,
University Tokyo
,
2018
.
17.
H. P.
Gregor
,
L. B.
Luttinger
, and
E. M.
Loebl
,
J. Phys. Chem.
59
(
34-39
),
366
368
(
1955
).
18.
J. C.
Sullivan
and
J. C.
Hindman
,
J. Am. Chem. Soc.
74
,
6091
9096
(
1952
).
19.
F.
Tanaka
,
J. Polym. Sci., Part B: Polymer Phys.
41
,
2413
2421
(
2003
).
20.
P. J.
Flory
,
J. Am. Chem. Soc.
63
,
3083
3090
(
1941
).
21.
P. J.
Flory
,
J. Am. Chem. Soc.
63
,
3091
3096
(
1941
).
22.
P. J.
Flory
,
J. Am. Chem. Soc.
63
,
3096
3100
(
1941
).
23.
P. J.
Flory
,
Principles of Polymer Chemistry
(
Cornell University Press
,
Ithaca, New York
,
1953
), Chap. XI.
24.
W. H.
Stockmayer
,
J. Chem. Phys.
11
,
45
55
(
1943
).
25.
W. H.
Stockmayer
,
J. Chem. Phys.
12
,
125
131
(
1944
).
26.
W. H.
Stockmayer
,
J. Polym. Sci.
4
,
69
71
(
1952
).
27.
K.
Fukui
and
T.
Yamabe
,
Bull. Chem. Soc. Jpn.
40
,
2052
(
1967
).
28.
F.
Tanaka
and
W. H.
Stockmayer
,
Macromolecules
27
,
3943
(
1994
).
29.
F.
Tanaka
,
Polymer Physics: Applications to Molecular Association and Thermoreversible Gelation
(
Cambridge University Press
,
Cambridge
,
2011
).
30.
Y.
Zhang
,
J. F.
Douglas
,
B. D.
Ermi
, and
E. J.
Amis
,
J. Chem. Phys.
114
,
3299
3313
(
2001
).
31.
J.
Bjerrum
,
Chem. Rev.
46
,
381
401
(
1950
).
32.
A. R.
Shultz
and
P. J.
Flory
,
J. Am. Chem. Soc.
74
,
4760
4767
(
1952
).
33.
J.
Dudowicz
,
J. F.
Douglas
, and
K. F.
Freed
,
J. Phys. Chem. B
112
,
16193
16204
(
2008
).
34.
J.
Dudowicz
,
J. F.
Douglas
, and
K. F.
Freed
,
J. Chem. Phys.
147
,
064909
(
2017
).
35.
M.
Kohri
,
K.
Yanagimoto
,
K.
Kohaku
,
S.
Shiomoto
,
Kobayashi
,
A.
Imai
,
F.
Shiba
,
T.
Taniguchi
, and
K.
Kishikawa
,
Macromolecules
51
,
6740
6745
(
2018
).
36.
C.
Garnier
,
M. A. V.
Axelos
, and
J.-F.
Thibault
,
Food Hydrocoll.
5
,
105
108
(
1991
).
37.
E. E.
Braudo
,
A. A.
Soshinsky
,
V. P.
Yuryev
, and
V. B.
Tolstoguzov
,
Carbohydr. Polym.
18
,
165
169
(
1992
).
38.
A.
Lips
,
A. H.
Clark
,
N.
Cutler
, and
D.
Durand
,
Food Hydrocoll.
5
,
87
99
(
1991
).
39.
A.
Assifaoui
,
A.
Lerbret
,
H. T. D.
Uyen
,
F.
Neiers
,
O.
Chambin
,
C.
Loupiacac
, and
F.
Cousinc
,
Soft Matter
11
,
551
560
(
2015
).
40.
M.
Papageorgiou
,
S.
Kasapis
, and
M. G.
Gothard
,
Carbohydr. Polym.
24
,
199
207
(
1994
).
41.
X.
Wang
and
H. G.
Spencer
,
Polymer
39
,
2759
2764
(
1998
).
42.
Y.
Fang
,
S.
Al-Assaf
,
G. O.
Phillips
,
K.
Nishinari
,
T.
Funami
,
P. A.
Williams
, and
L.
Li
,
J. Phys. Chem. B
111
,
2456
2462
(
2007
).
43.
Y.
Fang
,
S.
Al-Assaf
,
G. O.
Phillips
,
K.
Nishinari
,
T.
Funami
, and
P. A.
Williams
,
Carbohydr. Polym.
72
,
334
341
(
2008
).
44.
P.
Agulhon
,
M.
Robitzera
,
J.-P.
Habasb
, and
F.
Quignarda
,
Carbohydr. Polym.
112
,
525
531
(
2014
).
45.
A. K.
Higham
,
C. A.
Bonino
,
S. R.
Raghavan
, and
S. A.
Khan
,
Soft Matter
10
,
4990
5002
(
2014
).
46.
H.
Hecht
and
S.
Srebnik
,
Carbohydr. Polym.
157
,
1144
1152
(
2017
).
You do not currently have access to this content.