A systematic study of interfacial properties of binary mixtures of simple fluids was carried out by molecular dynamics (MD) simulation and density gradient theory (DGT). The fluids are described by the Lennard-Jones truncated and shifted (LJTS) potential with truncation radius of 2.5 diameters. The following interfacial properties were studied: surface tension, relative adsorption, enrichment, and interfacial thickness. A recently developed equation of state for the LJTS fluid, the Perturbed Lennard-Jones truncated and shifted equation of state (PeTS EOS) was used as the basis for DGT. Six binary mixtures (components 1 + 2) were studied at a constant temperature, which was chosen such that the high-boiling component 1 is subcritical, while the low-boiling component 2 is either subcritical or supercritical. Furthermore, a parameter ξ in the combination rule for the unlike dispersive interaction was varied such that the resulting mixtures showed three types of behavior: high-boiling azeotrope, ideal, and low-boiling azeotrope. The parameters of the LJTS potential, including ξ, were also used in the PeTS EOS without any adjustment. Despite this simple approach, excellent agreement between the results of the PeTS EOS and the MD results for the phase equilibrium and the interfacial properties is observed. Enrichment at the interface is only found for the low-boiling component 2. The enrichment increases with decreasing concentration of component 2 and is favored by high boiling point differences of the pure components 1 and 2 and positive deviations from Raoult’s law for the mixture 1 + 2.

1.
See www.ddbst.com for Dortmund data bank,
2017
.
2.
C.
Wohlfarth
and
B.
Wohlfarth
, “
Surface tension of pure liquids and binary liquid mixtures
,” in
Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology
(
Springer
,
1997
), Vol. 16.
3.
S.
Becker
,
S.
Werth
,
M.
Horsch
,
K.
Langenbach
, and
H.
Hasse
, “
Interfacial tension and adsorption in the binary system ethanol and carbon dioxide: Experiments, molecular simulation and density gradient theory
,”
Fluid Phase Equilib.
427
,
476
(
2016
).
4.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Dover Publications
,
New York
,
1982
).
5.
R.
Evans
, in
Fundamentals of Inhomogeneous Fluids
, edited by
D.
Henderson
(
Marcel Dekker
,
New York
,
1992
).
6.
J.
Vrabec
,
G. K.
Kedia
,
G.
Fuchs
, and
H.
Hasse
, “
Comprehensive study of the vapour-liquid coexistence of the truncated and shifted Lennard-Jones fluid including planar and spherical interface properties
,”
Mol. Phys.
104
,
1509
(
2006
).
7.
S.
Stephan
,
J.
Liu
,
K.
Langenbach
,
W. G.
Chapman
, and
H.
Hasse
, “
Vapor-liquid interface of the Lennard-Jones truncated and shifted fluid: Comparison of molecular simulation, density gradient theory, and density functional theory
,”
J. Phys. Chem. C
122
,
24705
24715
(
2018
).
8.
G. A.
Chapela
,
G.
Saville
,
S. M.
Thompson
, and
J. S.
Rowlinson
, “
Computer simulation of a gas-liquid surface. Part 1
,”
J. Chem. Soc., Faraday Trans. 2
73
,
1133
1144
(
1977
).
9.
F. J.
Martinez-Ruiz
and
F. J.
Blas
, “
Interfacial properties of binary mixtures of square-well molecules from Monte Carlo simulation
,”
J. Chem. Phys.
144
,
154705
(
2016
).
10.
F. J.
Blas
and
L. F.
Vega
, “
Thermodynamic behaviour of homonuclear and heteronuclear Lennard-Jones chains with association sites from simulation and theory
,”
Mol. Phys.
92
,
135
(
1997
).
11.
D. J.
Lee
,
M. M.
Telo da Gama
, and
K. E.
Gubbins
, “
The vapour-liquid interface for a Lennard-Jones model of argon-krypton mixtures
,”
Mol. Phys.
53
,
1113
1130
(
1984
).
12.
D. J.
Lee
,
M. M.
Telo da Gama
, and
K. E.
Gubbins
, “
Adsorption and surface tension reduction at the vapor-liquid interface
,”
J. Phys. Chem.
89
,
1514
1519
(
1985
).
13.
A.
Mejía
,
J. C.
Pàmies
,
D.
Duque
,
H.
Segura
, and
L. F.
Vega
, “
Phase and interface behaviors in type-I and type-V Lennard-Jones mixtures: Theory and simulations
,”
J. Chem. Phys.
123
,
034505
(
2005
).
14.
S.
Werth
,
M.
Kohns
,
K.
Langenbach
,
M.
Heilig
,
M.
Horsch
, and
H.
Hasse
, “
Interfacial and bulk properties of vapor-liquid equilibria in the system toluene + hydrogen chloride + carbon dioxide by molecular simulation and density gradient theory + PC-SAFT
,”
Fluid Phase Equilib.
427
,
219
(
2016
).
15.
J. C.
Neyt
,
A.
Wender
,
V.
Lachet
,
A.
Ghoufi
, and
P.
Malfreyt
, “
Molecular modeling of the liquid-vapor interfaces of a multi-component mixture: Prediction of the coexisting densities and surface tensions at different pressures and gas compositions
,”
J. Chem. Phys.
139
,
024701
(
2013
).
16.
S.
Eckelsbach
and
J.
Vrabec
, “
Fluid phase interface properties of acetone, oxygen, nitrogen and their binary mixtures by molecular simulation
,”
Phys. Chem. Chem. Phys.
17
,
27195
27203
(
2015
).
17.
M. M.
Telo da Gama
and
R.
Evans
, “
Theory of the liquid-vapour interface of a binary mixture of Lennard-Jones fluids
,”
Mol. Phys.
41
,
1091
1112
(
1980
).
18.
M. M.
Telo da Gama
and
R.
Evans
, “
Surface segregation and surface tension at the liquid-vapour interface of a binary mixture of Lennard-Jones fluids
,”
Faraday Symp. Chem. Soc.
16
,
45
58
(
1981
).
19.
S. P.
Protsenko
,
V. G.
Baidakov
, and
V. M.
Bryukhanov
, “
Binary Lennard-Jones mixtures with highly asymmetric interactions of the components. 2. Effect of the particle size on phase equilibria and properties of liquid-gas interfaces
,”
Fluid Phase Equilib.
430
,
67
74
(
2016
).
20.
S. P.
Protsenko
and
V. G.
Baidakov
, “
Binary Lennard-Jones mixtures with highly asymmetric interactions of the components. 1. Effect of the energy parameters on phase equilibria and properties of liquid-gas interfaces
,”
Fluid Phase Equilib.
429
,
242
253
(
2016
).
21.
C.
Klink
and
J.
Gross
, “
A density functional theory for vapor-liquid interfaces of mixtures using the perturbed-chain polar statistical associating fluid theory equation of state
,”
Ind. Eng. Chem. Res.
53
,
6169
(
2014
).
22.
V. G.
Baidakov
and
S. P.
Protsenko
, “
Molecular-dynamics investigation of phase equilibrium and surface tension in argon-neon system
,”
J. Phys. Chem. C
112
,
17231
17234
(
2008
).
23.
V. G.
Baidakov
,
A. M.
Kaverin
, and
M. N.
Khotienkova
, “
Surface tension of ethane-methane solutions: 1. Experiment and thermodynamic analysis of the results
,”
Fluid Phase Equilib.
356
,
90
95
(
2013
).
24.
V.
Baidakov
and
M.
Khotienkova
, “
Surface tension of methane-nitrogen solutions: 2. Description in the framework of the van der Waals gradient theory
,”
Fluid Phase Equilib.
425
,
402
410
(
2016
).
25.
F.
Llovell
,
A.
Galindo
,
F. J.
Blas
, and
G.
Jackson
, “
Classical density functional theory for the prediction of the surface tension and interfacial properties of fluids mixtures of chain molecules based on the statistical associating fluid theory for potentials of variable range
,”
J. Chem. Phys.
133
,
024704
(
2010
).
26.
C. I.
Poser
and
I. C.
Sanchez
, “
Interfacial tension theory of low and high molecular weight liquid mixtures
,”
Macromolecules
14
,
361
370
(
1981
).
27.
O. G.
Niño-Amézquita
,
S.
Enders
,
P. T.
Jaeger
, and
R.
Eggers
, “
Interfacial properties of mixtures containing supercritical gases
,”
J. Supercrit. Fluids
55
,
724
(
2010
).
28.
O. G.
Niño-Amézquita
,
D.
van Putten
, and
S.
Enders
, “
Phase equilibrium and interfacial properties of water + CO2 mixtures
,”
Fluid Phase Equilib.
332
,
40
(
2012
).
29.
O. G.
Niño-Amézquita
,
S.
Enders
,
P. T.
Jaeger
, and
R.
Eggers
, “
Measurement and prediction of interfacial tension of binary mixtures
,”
Ind. Eng. Chem. Res.
49
,
592
601
(
2010
).
30.
O. G.
Niño-Amézquita
and
S.
Enders
, “
Phase equilibrium and interfacial properties of water+methane mixtures
,”
Fluid Phase Equilib.
407
,
143
151
(
2016
).
31.
F.
Biscay
,
A.
Ghoufi
,
V.
Lachet
, and
P.
Malfreyt
, “
Monte Carlo simulations of the pressure dependence of the water-acid gas interfacial tensions
,”
J. Phys. Chem. B
113
,
14277
14290
(
2009
).
32.
M.
Sahimi
and
B. N.
Taylor
, “
Surface tension of binary liquid-vapor mixtures: A comparison of mean-field and scaling theories
,”
J. Chem. Phys.
95
,
6749
6761
(
1991
).
33.
X.-S.
Li
,
J.-M.
Liu
, and
D.
Fu
, “
Investigation of interfacial tensions for carbon dioxide aqueous solutions by perturbed-chain statistical associating fluid theory combined with density-gradient theory
,”
Ind. Eng. Chem. Res.
47
,
8911
8917
(
2008
).
34.
T.
Lafitte
,
B.
Mendiboure
,
M. M.
Piñeiro
,
D.
Bessières
, and
C.
Miqueu
, “
Interfacial properties of water/CO2: A comprehensive description through a gradient theory SAFT-VR Mie approach
,”
J. Phys. Chem. B
114
,
11110
11116
(
2010
).
35.
O.
Lobanova
,
A.
Mejía
,
G.
Jackson
, and
E. A.
Müller
, “
SAFT-γ force field for the simulation of molecular fluids 6: Binary and ternary mixtures comprising water, carbon dioxide, and n-alkanes
,”
J. Chem. Thermodyn.
93
,
320
336
(
2016
).
36.
H.
Lin
,
Y.-Y.
Duan
, and
Q.
Min
, “
Gradient theory modeling of surface tension for pure fluids and binary mixtures
,”
Fluid Phase Equilib.
254
,
75
(
2007
).
37.
E. A.
Müller
and
A.
Mejía
, “
Interfacial properties of selected binary mixtures containing n-alkanes
,”
Fluid Phase Equilib.
282
,
68
81
(
2009
).
38.
C.
Cumicheo
,
M.
Cartes
,
H.
Segura
,
E. A.
Müller
, and
A.
Mejía
, “
High-pressure densities and interfacial tensions of binary systems containing carbon dioxide + n-alkanes: (n-dodecane, n-tridecane, n-tetradecane)
,”
Fluid Phase Equilib.
380
,
82
(
2014
).
39.
L. M.
Pereira
,
A.
Chapoy
,
R.
Burgass
, and
B.
Tohidi
, “
Measurement and modelling of high pressure density and interfacial tension of (gas + n-alkane) binary mixtures
,”
J. Chem. Thermodyn.
97
,
55
69
(
2016
).
40.
S.
Stephan
,
K.
Langenbach
, and
H.
Hasse
, “
Enrichment of components at vapour–liquid interfaces: A study by molecular simulation and density gradient theory
,”
Chem. Eng. Trans.
69
,
295
300
(
2018
).
41.
W. A.
Fouad
and
L. F.
Vega
, “
The phase and interfacial properties of azeotropic refrigerants: The prediction of aneotropes from molecular theory
,”
Phys. Chem. Chem. Phys.
19
,
8977
8988
(
2017
).
42.
M. M.
Telo da Gama
and
R.
Evans
, “
The structure and surface tension of the liquid-vapour interface near the upper critical end point of a binary mixture of Lennard-Jones fluids
,”
Mol. Phys.
48
,
229
250
(
1983
).
43.
M.
Telo da Gama
and
R.
Evans
, “
The structure and surface tension of the liquid-vapour interface near the upper critical end point of a binary mixture of Lennard-Jones fluids
,”
Mol. Phys.
48
,
251
266
(
1983
).
44.
V.
Mazur
,
L.
Boshkov
, and
V.
Murakhovsky
, “
Global phase behaviour of binary mixtures of Lennard-Jones molecules
,”
Phys. Lett. A
104
,
415
418
(
1984
).
45.
H.
Kahl
and
S.
Enders
, “
Interfacial properties of binary mixtures
,”
Phys. Chem. Chem. Phys.
4
,
931
936
(
2002
).
46.
E.
Schäfer
,
G.
Sadowski
, and
S.
Enders
, “
Interfacial tension of binary mixtures exhibiting azeotropic behavior: Measurement and modeling with PCP-SAFT combined with density gradient theory
,”
Fluid Phase Equilib. Spec. Issue PPEPPD
362
,
151
(
2014
).
47.
H.
Cardenas
and
A.
Mejía
, “
Phase behaviour and interfacial properties of ternary system CO2 + n-butane + n-decane: Coarse-grained theoretical modelling and molecular simulations
,”
Mol. Phys.
114
,
2627
2640
(
2016
).
48.
W.
Shi
,
N. S.
Siefert
, and
B. D.
Morreale
, “
Molecular simulations of CO2, H2, H2O, and H2S gas absorption into hydrophobic poly(dimethylsiloxane) (PDMS) solvent: Solubility and surface tension
,”
J. Phys. Chem. C
119
,
19253
19265
(
2015
).
49.
C.
Bühl
and
S.
Enders
, “
Prediction of interfacial properties of ternary, sulfur-containing mixtures
,”
J. Chem. Eng. Data
61
,
4261
4269
(
2016
).
50.
C.
Bühl
,
A.
Danzer
, and
S.
Enders
, “
Prediction of surface properties of binary, sulfur containing mixtures
,”
Fluid Phase Equilib.
416
,
94
103
(
2016
).
51.
C.
Miqueu
,
J. M.
Miguez
,
M. M.
Pineiro
,
T.
Lafitte
, and
B.
Mendiboure
, “
Simultaneous application of the gradient theory and Monte Carlo molecular simulation for the investigation of methane/water interfacial properties
,”
J. Phys. Chem. B
115
,
9618
9625
(
2011
).
52.
M.
Heier
,
S.
Stephan
,
J.
Liu
,
W. G.
Chapman
,
H.
Hasse
, and
K.
Langenbach
, “
Equation of state for the Lennard-Jones truncated and shifted fluid with a cut-off radius of 2.5σ based on perturbation theory and its applications to interfacial thermodynamics
,”
Mol. Phys.
116
,
2083
2094
(
2018
).
53.
M.
Horsch
,
H.
Hasse
,
A. K.
Shchekin
,
A.
Agarwal
,
S.
Eckelsbach
,
J.
Vrabec
,
E. A.
Müller
, and
G.
Jackson
, “
Excess equimolar radius of liquid drops
,”
Phys. Rev. E
85
,
031605
(
2012
).
54.
W.
Eckhardt
,
A.
Heinecke
,
R.
Bader
,
M.
Brehm
,
N.
Hammer
,
H.
Huber
,
H.-G.
Kleinhenz
,
J.
Vrabec
,
H.
Hasse
,
M.
Horsch
,
M.
Bernreuther
,
C. W.
Glass
,
C.
Niethammer
,
A.
Bode
, and
H.-J.
Bungartz
, “
591 tflops multi-trillion particles simulation on SuperMUC
,” in
Supercomputing
(
Springer
,
Berlin, Heidelberg
,
2013
), pp.
1
12
.
55.
M.
Horsch
,
S.
Miroshnichenko
, and
J.
Vrabec
, “
Steady-state molecular dynamics simulation of vapour to liquid nucleation with McDonald’s daemon
,”
J. Phys. Stud.
13
,
4004
(
2009
).
56.
M.
Horsch
and
H.
Hasse
, “
Molecular simulation of nano-dispersed fluid phases
,”
Chem. Eng. Sci.
107
,
235
(
2014
).
57.
M.
Thol
,
G.
Rutkai
,
R.
Span
,
J.
Vrabec
, and
R.
Lustig
, “
Equation of state for the Lennard-Jones truncated and shifted model fluid
,”
Int. J. Thermophys.
36
,
25
(
2015
).
58.
S.
Stephan
,
M. P.
Lautenschlaeger
,
I. A.
Alhafez
,
M. T.
Horsch
,
H. M.
Urbassek
, and
H.
Hasse
, “
Molecular dynamics simulation study of mechanical effects of lubrication on a nanoscale contact process
,”
Tribol. Lett.
66
,
126
(
2018
).
59.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1989
).
60.
A.
Lotfi
,
J.
Vrabec
, and
J.
Fischer
, “
Vapour liquid equilibria of the Lennard-Jones fluid from the NpT plus test particle method
,”
Mol. Phys.
76
,
1319
1333
(
1992
).
61.
A.
Trokhymchuk
and
J.
Alejandre
, “
Computer simulations of liquid/vapor interface in Lennard-Jones fluids: Some questions and answers
,”
J. Chem. Phys.
111
,
8510
8523
(
1999
).
62.
B.
Smit
, “
Phase diagrams of Lennard-Jones fluids
,”
J. Chem. Phys.
96
,
8639
8640
(
1992
).
63.
D. O.
Dunikov
,
S. P.
Malyshenko
, and
V. V.
Zhakhovskii
, “
Corresponding states law and molecular dynamics simulations of the Lennard-Jones fluid
,”
J. Chem. Phys.
115
,
6623
6631
(
2001
).
64.
S.
Werth
,
S. V.
Lishchuk
,
M.
Horsch
, and
H.
Hasse
, “
The influence of the liquid slab thickness on the planar vapor-liquid interfacial tension
,”
Physica A
392
,
2359
(
2013
).
65.
M.
Guo
,
D.-Y.
Peng
, and
B. C.-Y.
Lu
, “
On the long-range corrections to computer simulation results for the Lennard-Jones vapor-liquid interface
,”
Fluid Phase Equilib.
130
,
19
30
(
1997
).
66.
M. J. P.
Nijmeijer
,
A. F.
Bakker
,
C.
Bruin
, and
J. H.
Sikkenk
, “
A molecular dynamics simulation of the Lennard-Jones liquid-vapor interface
,”
J. Chem. Phys.
89
,
3789
3792
(
1988
).
67.
V.
Baidakov
,
G.
Chernykh
, and
S.
Protsenko
, “
Effect of the cut-off radius of the intermolecular potential on phase equilibrium and surface tension in Lennard-Jones systems
,”
Chem. Phys. Lett.
321
,
315
320
(
2000
).
68.
R.
Evans
,
J. R.
Henderson
,
D. C.
Hoyle
,
A. O.
Parry
, and
Z. A.
Sabeur
, “
Asymptotic decay of liquid structure: Oscillatory liquid-vapour density profiles and the Fisher-Widom line
,”
Mol. Phys.
80
,
755
775
(
1993
).
69.
R.
Evans
, “
Oscillatory behaviour of density profiles: Relevance for fluid interfacial phenomena
,”
Ber. Bunsen-Ges. Phys. Chem.
98
,
345
352
(
1994
).
70.
P. G.
Bolhuis
and
D.
Chandler
, “
Transition path sampling of cavitation between molecular scale solvophobic surfaces
,”
J. Chem. Phys.
113
,
8154
8160
(
2000
).
71.
S.
Toxvaerd
, “
Molecular dynamics simulation of prewetting
,”
J. Phys. Chem. C
111
,
15620
15624
(
2007
).
72.
J. A.
van Meel
,
A. J.
Page
,
R. P.
Sear
, and
D.
Frenkel
, “
Two-step vapor-crystal nucleation close below triple point
,”
J. Chem. Phys.
129
,
204505
(
2008
).
73.
M. J.
Haye
and
C.
Bruin
, “
Molecular dynamics study of the curvature correction to the surface tension
,”
J. Chem. Phys.
100
,
556
559
(
1994
).
74.
W.
Shi
and
J.
Johnson
, “
Histogram reweighting and finite-size scaling study of the Lennard-Jones fluids
,”
Fluid Phase Equilib.
187
,
171
191
(
2001
).
75.
H. A.
Lorentz
, “
Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase
,”
Ann. Phys.
248
,
127
136
(
1881
).
76.
D.
Berthelot
, “
Sur le mélange des gaz
,”
C. R. Hebd. Séances Acad. Sci.
126
,
1703
1706
(
1898
).
77.
T.
Schnabel
,
J.
Vrabec
, and
H.
Hasse
, “
Unlike Lennard-Jones parameters for vapor-liquid equilibria
,”
J. Mol. Liq.
135
,
170
178
(
2007
).
78.
D.
Fincham
, “
Leapfrog rotational algorithms
,”
Mol. Simul.
8
,
165
178
(
1992
).
79.
C.
Niethammer
,
S.
Becker
,
M.
Bernreuther
,
M.
Buchholz
,
W.
Eckhardt
,
A.
Heinecke
,
S.
Werth
,
H.-J.
Bungartz
,
C. W.
Glass
,
H.
Hasse
,
J.
Vrabec
, and
M.
Horsch
, “
ls1 mardyn: The massively parallel molecular dynamics code for large systems
,”
J. Chem. Theory Comput.
10
,
4455
(
2014
).
80.
J.
Walton
,
D. J.
Tildesley
,
J. S.
Rowlinson
, and
J. R.
Henderson
, “
The pressure tensor at the planar surface of a liquid
,”
Mol. Phys.
48
,
1357
1368
(
1983
).
81.
J. G.
Kirkwood
and
F. P.
Buff
, “
The statistical mechanical theory of surface tension
,”
J. Chem. Phys.
17
,
338
343
(
1949
).
82.
J. A.
Barker
and
D.
Henderson
, “
Perturbation theory and equation of state for fluids. II. A successful theory of liquids
,”
J. Chem. Phys.
47
,
4714
(
1967
).
83.
J.
Gross
and
G.
Sadowski
, “
Perturbed-Chain SAFT: An equation of state based on a perturbation theory for chain molecules
,”
Ind. Eng. Chem. Res.
40
,
1244
(
2001
).
84.
T. W.
Leland
,
J. S.
Rowlinson
,
G. A.
Sather
, and
I. D.
Watson
, “
Statistical thermodynamics of two-fluid models of mixtures
,”
Trans. Faraday Soc.
65
,
2034
2043
(
1969
).
85.
J.-P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
, 4th ed. (
Academic Press
,
2013
).
86.
J.
Gross
and
G.
Sadowski
, “
Application of perturbation theory to a hard-chain reference fluid: An equation of state for square-well chains
,”
Fluid Phase Equilib.
168
,
183
(
2000
).
87.
S. K.
Shibata
and
S. I.
Sandler
, “
Critical evaluation of equation of state mixing rules for the prediction of high-pressure phase equilibria
,”
Ind. Eng. Chem. Res.
28
,
1893
1898
(
1989
).
88.
T.
Boublík
, “
Hard sphere equation of state
,”
J. Chem. Phys.
53
,
471
(
1970
).
89.
G. A.
Mansoori
,
N. F.
Carnahan
,
K. E.
Starling
, and
T. W.
Leland
, “
Equilibrium thermodynamic properties of the mixture of hard spheres
,”
J. Chem. Phys.
54
,
1523
(
1971
).
90.
S. S.
Chen
and
A.
Kreglewski
, “
Applications of the augmented van der Waals theory of fluids: I. Pure fluids
,”
Ber. Bunsen-Ges. Phys. Chem.
81
,
1048
(
1977
).
91.
J. W.
Cahn
and
J. E.
Hilliard
, “
Free energy of a nonuniform system. I. Interfacial free energy
,”
J. Chem. Phys.
28
,
258
(
1958
).
92.
J. W.
Cahn
, “
Free energy of a nonuniform system. II. Thermodynamic basis
,”
J. Chem. Phys.
30
,
1121
(
1959
).
93.
C.
Miqueu
,
B.
Mendiboure
,
A.
Graciaa
, and
J.
Lachaise
, “
Modelling of the surface tension of pure components with the gradient theory of fluid interfaces: A simple and accurate expression for the influence parameters
,”
Fluid Phase Equilib.
207
,
225
(
2003
).
94.
P. M.
Cornelisse
, “
The square gradient theory applied simultaneous modelling of interfacial tension and phase behaviour
,” Ph.D. thesis,
Technische Universiteit Delft
,
1997
.
95.
B. S.
Carey
,
L. E.
Scriven
, and
H. T.
Davis
, “
Semiempirical theory of surface tension of binary systems
,”
AIChE J.
26
,
705
711
(
1980
).
96.
X.
Mu
,
F.
Frank
,
F. O.
Alpak
, and
W. G.
Chapman
, “
Stabilized density gradient theory algorithm for modeling interfacial properties of pure and mixed systems
,”
Fluid Phase Equilib.
435
,
118
130
(
2017
).
97.
C.
Miqueu
,
B.
Mendiboure
,
C.
Graciaa
, and
J.
Lachaise
, “
Modelling of the surface tension of binary and ternary mixtures with the gradient theory of fluid interfaces
,”
Fluid Phase Equilib.
218
,
189
203
(
2004
).
98.
C.
Miqueu
,
B.
Mendiboure
,
A.
Graciaa
, and
J.
Lachaise
, “
Modeling of the surface tension of multicomponent mixtures with the gradient theory of fluid interfaces
,”
Ind. Eng. Chem. Res.
44
,
3321
3329
(
2005
).
99.
B. S.
Carey
,
L. E.
Scriven
, and
H. T.
Davis
, “
On gradient theories of fluid interfacial stress and structure
,”
J. Chem. Phys.
69
,
5040
5049
(
1978
).
100.
J.
Mairhofer
and
J.
Gross
, “
Modeling of interfacial properties of multicomponent systems using density gradient theory and PCP-SAFT
,”
Fluid Phase Equilib.
439
,
31
(
2017
).
101.
S.
Enders
and
H.
Kahl
, “
Interfacial properties of water + alcohol mixtures
,”
Fluid Phase Equilib.
263
,
160
167
(
2008
).
102.
P. M.
Cornelisse
,
C. J.
Peters
, and
J.
de Swaan Arons
, “
On the fundamentals of the gradient theory of van der Waals
,”
J. Chem. Phys.
106
,
9820
9834
(
1997
).
103.
V. G.
Baidakov
,
S. P.
Protsenko
,
G. G.
Chernykh
, and
G. S.
Boltachev
, “
Statistical substantiation of the van der Waals theory of inhomogeneous fluids
,”
Phys. Rev. E
65
,
041601
(
2002
).
104.
X.
Liang
,
M. L.
Michelsen
, and
G. M.
Kontogeorgis
, “
A density gradient theory based method for surface tension calculations
,”
Fluid Phase Equilib.
428
,
153
163
(
2016
).
105.
X.
Liang
,
M. L.
Michelsen
, and
G. M.
Kontogeorgis
, “
Pitfalls of using the geometric-mean combining rule in the density gradient theory
,”
Fluid Phase Equilib.
415
,
75
83
(
2016
).
106.
J. W.
Gibbs
,
The Scientific Papers of J. W. Gibbs
(
Dover Publications
,
1961
).
107.
T.
Wadewitz
and
J.
Winkelmann
, “
Density functional theory: Structure and interfacial properties of binary mixtures
,”
Ber. Bunsen-Ges. Phys. Chem.
100
,
1825
1832
(
1996
).
108.
J.
Lekner
and
J. R.
Henderson
, “
Surface tension and energy of a classical liquid-vapour interface
,”
Mol. Phys.
34
,
333
359
(
1977
).
109.
I. A.
McLure
,
B.
Edmonds
, and
M.
Lal
, “
Extremes in surface tension of fluorocarbon + hydrocarbon mixtures
,”
Nat. Phys. Sci.
241
,
71
(
1973
).
110.
I. A.
McLure
,
V. A. M.
Soares
, and
A. M.
Williamson
, “
Total surface segregation. a fresh look at the Gibbs adsorption isotherm for binary liquid mixtures
,”
Langmuir
9
,
2190
2201
(
1993
).
111.
R.
Defay
,
I.
Prigogine
,
A.
Bellmans
, and
D. H.
Everett
,
Surface Tension and Adsorption
(
Longmans
,
London
,
1966
).
112.
J.
Gross
and
J.
Vrabec
, “
An equation-of-state contribution for polar components: Dipolar molecules
,”
AIChE J.
52
,
1194
1204
(
2006
).
113.
W. G.
Chapman
,
G.
Jackson
,
K. E.
Gubbins
, and
M.
Radosz
, “
New reference equation of state for associating liquids
,”
Ind. Eng. Chem. Res.
29
,
1709
(
1990
).
114.
W. G.
Chapman
,
G.
Jackson
, and
K. E.
Gubbins
, “
Phase equilibira of associating fluids. Chain molecules with multiple bonding sites
,”
Mol. Phys.
65
,
1057
(
1988
).
115.
K.
Langenbach
, “
Co-oriented fluid functional equation for electrostatic interactions (coffee)
,”
Chem. Eng. Sci.
174
,
40
55
(
2017
).
116.
V.
Bongiorno
and
H. T.
Davis
, “
Modified van der Waals theory of fluid interfaces
,”
Phys. Rev. A
12
,
2213
2224
(
1975
).

Supplementary Material

You do not currently have access to this content.