Pyridine layers on Cu(110) possess a strong electric field due to the large dipole of adsorbed pyridine. This electric field is visible as an enhanced sum frequency response from both the copper surface electrons and the aromatic C–H stretch of pyridine via a third order susceptibility. In response to a visible pump pulse, both surface electron and C–H stretch sum frequency signals are reduced on a subpicosecond time scale. In addition, the relative phase between the two signals changes over a few hundred femtoseconds, which indicates a change in the electronic structure of the adsorbate. We explain the transients as a consequence of the previously observed pyridine dipole field reversal when the pump pulse excites electrons into the pyridine π* orbital. The pyridine anions in the pyridine layer cause a large-scale structural change which alters the pyridine-copper bond, reflected in the altered sum frequency response.

1.
M.
Galperin
 et al,
Science
319
,
1056
(
2008
).
2.
W.
Ni
 et al,
Nano Lett.
10
,
77
(
2010
).
3.
P.
Hu
 et al,
J. Phys. Chem. Lett.
9
,
5167
(
2018
).
4.
A.
Vilan
,
D.
Aswal
, and
D.
Cahen
,
Chem. Rev.
117
,
4248
(
2017
).
5.
J. C.
Tully
,
Annu. Rev. Phys. Chem.
51
,
153
(
2000
).
6.
H.
Arnolds
and
M.
Bonn
,
Surf. Sci. Rep.
65
,
45
(
2010
).
7.
E. H.
Backus
 et al,
Science
310
,
1790
(
2005
).
8.
M.
Bonn
 et al,
Phys. Rev. Lett.
84
,
4653
(
2000
).
9.
K.-I.
Inoue
,
K.
Watanabe
, and
Y.
Matsumoto
,
J. Chem. Phys.
137
,
024704
(
2012
).
10.
B. L.
Maschhoff
and
J. P.
Cowin
,
J. Chem. Phys.
101
,
8138
(
1994
).
11.
M.
Bonn
 et al,
Science
285
,
1042
(
1999
).
12.
I. M.
Lane
 et al,
Phys. Rev. Lett.
97
,
186105
(
2006
).
13.
D.
Novko
,
M.
Alducin
, and
J. I.
Juaristi
,
Phys. Rev. Lett.
120
,
156804
(
2018
).
14.
T.
Omiya
and
H.
Arnolds
,
J. Chem. Phys.
141
,
214705
(
2014
).
15.
T.
Omiya
 et al,
Surfaces
2
,
117
(
2019
).
16.
D. B.
Dougherty
,
J.
Lee
, and
J. T.
Yates
, Jr.
,
J. Phys. Chem. B
110
,
11991
(
2006
).
17.
D.-Y.
Wu
 et al,
J. Phys. Chem. C
112
,
4195
(
2008
).
18.
Z.
Ma
 et al,
Phys. Chem. Chem. Phys.
13
,
9747
(
2011
).
19.
M.
Kamenetska
 et al,
J. Am. Chem. Soc.
132
,
6817
(
2010
).
20.
S.
Haq
and
D. A.
King
,
J. Phys. Chem.
100
,
16957
(
1996
).
21.
J. G.
Lee
,
J.
Ahner
, and
J. T.
Yates
,
J. Chem. Phys.
114
,
1414
(
2001
).
22.
T.
Gießel
 et al,
J. Chem. Phys.
110
,
9666
(
1999
).
23.
Y.
Ie
 et al,
J. Am. Chem. Soc.
133
,
3014
(
2011
).
24.
B. B.
Demore
,
W. S.
Wilcox
, and
J. H.
Goldstein
,
J. Chem. Phys.
22
,
876
(
1954
).
25.
J. L.
Gland
and
G. A.
Somorjai
,
Surf. Sci.
38
,
157
(
1973
).
26.
D.
Heskett
 et al,
Surf. Sci.
197
,
225
(
1988
).
27.
Q.
Zhong
,
C.
Gahl
, and
M.
Wolf
,
Surf. Sci.
496
,
21
(
2002
).
28.
J. E.
Whitten
,
Surf. Science
546
,
107
(
2003
).
29.
G.
Heimel
 et al,
Nano Lett.
7
,
932
(
2007
).
30.
S.
Bahr
and
V.
Kempter
,
J. Chem. Phys.
127
,
174514
(
2007
).
31.
O. T.
Hofmann
 et al,
J. Chem. Phys.
139
,
174701
(
2013
).
32.
N.
García Rey
 et al,
J. Phys. Chem. C
121
,
6692
(
2017
).
33.
P.
Deshlahra
 et al,
Langmuir
28
,
8408
(
2012
).
34.
S.
Ong
,
X.
Zhao
, and
K. B.
Eisenthal
,
Chem. Phys. Lett.
191
,
327
(
1992
).
35.
Y.-C.
Wen
 et al,
Phys. Rev. Lett.
116
,
016101
(
2016
).
36.
G.
Gonella
 et al,
J. Phys. Chem. C
120
,
9165
(
2016
).
37.
E.
Tyrode
and
R.
Corkery
,
J. Phys. Chem. C
122
,
28775
(
2018
).
38.
N.
García Rey
 et al,
J. Phys. Chem. C
123
,
1279
(
2019
).
39.
P.
Koelsch
 et al,
J. Opt. Soc. Am. B
30
,
219
(
2013
).
40.
N.
García Rey
and
D. D.
Dlott
,
J. Electroanal. Chem.
800
,
114
(
2017
).
41.
H.
Arnolds
 et al,
Rev. Sci. Instrum.
74
,
3943
(
2003
).
42.
X.
Zhao
,
S.
Ong
, and
K. B.
Eisenthal
,
Chem. Phys. Lett.
202
,
513
(
1993
).
43.
K. B.
Eisenthal
,
Chem. Rev.
96
,
1343
(
1996
).
44.
F. M.
Geiger
,
Annu. Rev. Phys. Chem.
60
,
61
(
2009
).
45.
A. G. F. d.
Beer
,
R. K.
Campen
, and
S.
Roke
,
Phys. Rev. B
82
,
235431
(
2010
).
46.
K. C.
Jena
,
P. A.
Covert
, and
D. K.
Hore
,
J. Phys. Chem. Lett.
2
,
1056
(
2011
).
47.
J.
Wang
 et al,
J. Phys. Chem. B
108
,
3625
(
2004
).
48.
A.
Eftekhari-Bafrooei
and
E.
Borguet
,
J. Am. Chem. Soc.
131
,
12034
(
2009
).
49.
A.
Eftekhari-Bafrooei
and
E.
Borguet
,
J. Phys. Chem. Lett.
2
,
1353
(
2011
).
50.
R. M.
Hochstrasser
and
J. W.
Michaluk
,
J. Chem. Phys.
55
,
4668
(
1971
).
51.
A.
Lagutchev
,
S. A.
Hambir
, and
D. D.
Dlott
,
J. Phys. Chem. C
111
,
13645
(
2007
).
52.
A. G.
Lambert
,
P. B.
Davies
, and
D. J.
Neivandt
,
Appl. Spectrosc. Rev.
40
,
103
(
2005
).
53.
B.
Busson
and
A.
Tadjeddine
,
J. Phys. Chem. C
113
,
21895
(
2009
).
54.
A. T.
Zayak
 et al,
Phys. Rev. Lett.
106
,
083003
(
2011
).
55.
Y.
Ikezawa
 et al,
Electrochim. Acta
43
,
3297
(
1998
).
56.
J.
Hohlfeld
 et al,
Appl. Phys. A
60
,
137
(
1995
).
57.
J.
Hohlfeld
,
U.
Conrad
, and
E.
Matthias
,
Appl. Phys. B
63
,
541
(
1996
).
58.
K. H.
Frank
,
R.
Dudde
, and
E. E.
Koch
,
Chem. Phys. Lett.
132
,
83
(
1986
).
59.
N.
Atodiresei
 et al,
Phys. Rev. B
78
,
045411
(
2008
).
60.
N.
García Rey
and
H.
Arnolds
,
J. Chem. Phys.
135
,
224708
(
2011
).

Supplementary Material

You do not currently have access to this content.