We explore a separable resolution-of-the-identity (RI) formalism built on quadratures over limited sets of real-space points designed for all-electron calculations. Our implementation preserves, in particular, the use of common atomic orbitals and their related auxiliary basis sets. The setup of the present density fitting scheme, i.e., the calculation of the system specific quadrature weights, scales cubically with respect to the system size. Extensive accuracy tests are presented for the Fock exchange and MP2 correlation energies. We finally demonstrate random phase approximation (RPA) correlation energy calculations with a scaling that is cubic in terms of operations, quadratic in memory, with a small crossover with respect to our standard RI-RPA implementation.

1.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
2.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
3.
J. W.
Mintmire
and
B. I.
Dunlap
,
Phys. Rev. A
25
,
88
(
1982
).
4.
C.
Van Alsenoy
,
J. Comput. Chem.
9
,
620
(
1988
).
5.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
6.
O.
Vahtras
,
J.
Almlof
, and
M.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
7.
W.
Klopper
and
C. C. M.
Samson
,
J. Chem. Phys.
116
,
6397
(
2002
).
8.
D.
Bohm
and
D.
Pines
,
Phys. Rev.
92
,
609
(
1953
).
9.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
10.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
).
11.
H.
Eshuis
,
J.
Yarkony
, and
F.
Furche
,
J. Chem. Phys.
132
,
234114
(
2010
).
12.
X.
Ren
,
P.
Rinke
,
V.
Blum
,
J.
Wieferink
,
A.
Tkatchenko
,
A.
Sanfilippo
,
K.
Reuter
, and
M.
Scheffler
,
New J. Phys.
14
,
053020
(
2012
).
13.
I.
Duchemin
,
J.
Li
, and
X.
Blase
,
J. Chem. Theory Comput.
13
,
1199
(
2017
).
14.
Y.
Jung
,
A.
Sodt
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
6692
(
2005
).
15.
S.
Reine
,
E.
Tellgren
,
A.
Krapp
,
T.
Kjrgaard
,
T.
Helgaker
,
B.
Jansik
,
S.
Hst
, and
P.
Salek
,
J. Chem. Phys.
129
,
104101
(
2008
).
16.
A.
Sodt
and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
104106
(
2008
).
17.
A. C.
Ihrig
,
J.
Wieferink
,
I. Y.
Zhang
,
M.
Ropo
,
X.
Ren
,
P.
Rinke
,
M.
Scheffler
, and
V.
Blum
,
New J. Phys.
17
,
093020
(
2015
).
18.
J.
Almlöf
,
Chem. Phys. Lett.
181
,
319
(
1991
).
19.
J.
Wilhelm
,
P.
Seewald
,
M.
Del Ben
, and
J.
Hutter
,
J. Chem. Theory Comput.
12
,
5851
(
2016
).
20.
A.
Luenser
,
H. F.
Schurkus
, and
C.
Ochsenfeld
,
J. Chem. Theory Comput.
13
,
1647
(
2017
).
21.
M.
Häser
,
Theor. Chim. Acta
87
,
147
(
1993
).
22.
P. Y.
Ayala
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
3660
(
1999
).
23.
M.
Kállay
,
J. Chem. Phys.
142
,
204105
(
2015
).
24.
H. F.
Schurkus
and
C.
Ochsenfeld
,
J. Chem. Phys.
144
,
031101
(
2016
).
25.
H. N.
Rojas
,
R. W.
Godby
, and
R. J.
Needs
,
Phys. Rev. Lett.
74
,
1827
(
1995
).
26.
M.
Kaltak
,
J.
Klimes̆
, and
G.
Kresse
,
J. Chem. Theory Comput.
10
,
2498
(
2014
).
27.

We will distinguish strong localization properties that are independent of the system and weak localization that depends on the system characteristics (e.g., its dimensionality, size, electronic HOMO-LUMO gap, etc.).

28.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
,
Chem. Phys.
356
,
98
(
2009
), moving Frontiers in Quantum Chemistry.
29.
R. A.
Friesner
,
Annu. Rev. Phys. Chem.
42
,
341
(
1991
).
30.
R. M.
Parrish
,
E. G.
Hohenstein
,
T. J.
Martnez
, and
C. D.
Sherrill
,
J. Chem. Phys.
137
,
224106
(
2012
).
31.
J.
Lu
and
L.
Ying
,
J. Comput. Phys.
302
,
329
(
2015
).
32.
J.
Lu
and
L.
Ying
,
Ann. Math. Sci. Appl.
1
,
321
(
2016
).
33.
J.
Lu
and
K.
Thicke
,
J. Comput. Phys.
351
,
187
(
2017
).
34.
A.
Tikhonov
,
V.
Goncharsky
,
A.
Stepanov
, and
A.
Yagola
,
Numerical Methods for the Solution of Ill-Posed Problems
(
Springer Netherlands
,
1995
).
35.
V.
Lebedev
,
USSR Comput. Math. Math. Phys.
15
,
44
(
1975
).
36.
M.
Schreiber
,
M. R.
Silva-Junior
,
S. P. A.
Sauer
, and
W.
Thiel
,
J. Chem. Phys.
128
,
134110
(
2008
).
37.
M. R.
Silva-Junior
,
S. P. A.
Sauer
,
M.
Schreiber
, and
W.
Thiel
,
Mol. Phys.
108
,
453
(
2010
).
38.
D.
Jacquemin
,
V.
Wathelet
,
E. A.
Perpète
, and
C.
Adamo
,
J. Chem. Theory Comput.
5
,
2420
(
2009
).
39.
D.
Jacquemin
,
I.
Duchemin
, and
X.
Blase
,
J. Chem. Theory Comput.
11
,
3290
(
2015
).
40.
F.
Bruneval
,
S. M.
Hamed
, and
J. B.
Neaton
,
J. Chem. Phys.
142
,
244101
(
2015
).
41.
K.
Krause
and
W.
Klopper
,
J. Comput. Chem.
38
,
383
(
2017
).
42.
T.
Rangel
,
S. M.
Hamed
,
F.
Bruneval
, and
J. B.
Neaton
,
J. Chem. Theory Comput.
12
,
2834
(
2016
).
43.
J.
Krüger
,
F.
García
,
F.
Eisenhut
,
D.
Skidin
,
J.
Alonso
,
E.
Guitián
,
D.
Pérez
,
G.
Cuniberti
,
F.
Moresco
, and
D.
Peña
,
Angew. Chem., Int. Ed.
56
,
11945
(
2017
).
44.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
45.
M.
Valiev
,
E.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T.
Straatsma
,
H. V.
Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T.
Windus
, and
W.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
46.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
47.
J.
Li
,
G.
DAvino
,
I.
Duchemin
,
D.
Beljonne
, and
X.
Blase
,
J. Phys. Chem. Lett.
7
,
2814
(
2016
).
48.
D.
Pines
and
D.
Bohm
,
Phys. Rev.
85
,
338
(
1952
).
49.
P.
Nozières
and
D.
Pines
,
Phys. Rev.
111
,
442
(
1958
).
50.
F.
Furche
and
T. V.
Voorhis
,
J. Chem. Phys.
122
,
164106
(
2005
).
51.
M.
Fuchs
,
Y.-M.
Niquet
,
X.
Gonze
, and
K.
Burke
,
J. Chem. Phys.
122
,
094116
(
2005
).
52.
F.
Furche
,
J. Chem. Phys.
129
,
114105
(
2008
).
53.

All calculations were performed on 2 nodes of 2 × 16 cores of Intel Xeon Gold 6130 CPU @ 2.10 GHz, with Intel Omni-Path Interconnect, except for the RI-V RPA correlation energy of the octapeptide angiotensin II molecule where 4 half filled nodes were used in order to circumvent memory issues.

54.
J. E.
Moussa
,
J. Chem. Phys.
140
,
014107
(
2014
).
55.
P. M.
Gill
,
B. G.
Johnson
, and
J. A.
Pople
,
Chem. Phys. Lett.
209
,
506
(
1993
).
56.
O.
Treutler
and
R.
Ahlrichs
,
J. Chem. Phys.
102
,
346
(
1995
).
57.
A.
Schindlmayr
,
Phys. Rev. B
62
,
12573
(
2000
).
58.

Green’s functions in real-space and imaginary-time are reminiscent of the so-called auxiliary (pseudo)density matrices (P¯,P̲) of Eqs. (15) and (16) in Ref. 24, labeled as well (X, Y) in Eq. (3.1) of Ref. 22, expressed in the AO basis set.

59.
D.
Neuhauser
,
E.
Rabani
, and
R.
Baer
,
J. Phys. Chem. Lett.
4
,
1172
(
2013
).
60.
X.
Blase
,
I.
Duchemin
, and
D.
Jacquemin
,
Chem. Soc. Rev.
47
,
1022
(
2018
).
61.
F.
Bruneval
,
T.
Rangel
,
S. M.
Hamed
,
M.
Shao
,
C.
Yang
, and
J. B.
Neaton
,
Comput. Phys. Commun.
208
,
149
(
2016
).
62.
TURBOMOLE V6.2 2010, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

Supplementary Material

You do not currently have access to this content.