Analytic gradient expressions for the algebraic diagrammatic construction (ADC) scheme for the polarization propagator up to third order are derived using a Lagrangian approach. An implementation within the Q-CHEM electronic structure package for excited-state nuclear gradients of the ADC(2), ADC(2)-x, and ADC(3) models based on restricted and unrestricted Hartree–Fock references is presented. Details of the implementation and the applicability of the newly derived gradients for geometry optimizations and the quality of the resulting structures are discussed.
REFERENCES
1.
P.
Pulay
, “Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules
,” Mol. Phys.
17
, 197
–204
(1969
).2.
P.
Pulay
, “Analytical derivatives, forces, force constants, molecular geometries, and related response properties in electronic structure theory
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
, 169
–181
(2014
).3.
J.
Schirmer
, Phys. Rev. A
26
, 2395
(1982
).4.
A.
Dreuw
and M.
Wormit
, “The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
, 82
–95
(2015
).5.
A. B.
Trofimov
, G.
Stelter
, and J.
Schirmer
, J. Chem. Phys.
111
, 9982
(1999
).6.
P. H. P.
Harbach
, M.
Wormit
, and A.
Dreuw
, “The third-order algebraic diagrammatic construction method (ADC(3)) for the polarization propagator for closed-shell molecules: Efficient implementation and benchmarking
,” J. Chem. Phys.
141
, 064113
(2014
).7.
O.
Christiansen
, H.
Koch
, and P.
Jørgensen
, Chem. Phys. Lett.
243
, 409
(1995
).8.
C.
Møller
and M. S.
Plesset
, Phys. Rev.
46
, 618
(1934
).9.
10.
R. P.
Feynman
, “Forces in molecules
,” Phys. Rev.
56
, 340
–343
(1939
).11.
N. C.
Handy
and H. F.
Schaefer
III, “On the evaluation of analytic energy derivatives for correlated wave functions
,” J. Chem. Phys.
81
, 5031
–5033
(1984
).12.
T.
Helgaker
and P.
Jørgensen
, “Configuration-interaction energy derivatives in a fully variational formulation
,” Theor. Chim. Acta
75
, 111
–127
(1989
).13.
W.
Weber
and W.
Thiel
, Theor. Chem. Acc.
103
, 495
(2000
).14.
A.
Koslowski
, M. E.
Beck
, and W.
Thiel
, “Implementation of a general multireference configuration interaction procedure with analytic gradients in a semiempirical context using the graphical unitary group approach
,” J. Comput. Chem.
24
, 714
–726
(2003
).15.
H.
Lischka
, R.
Shepard
, R. M.
Pitzer
, I.
Shavitt
, M.
Dallos
, T.
Müller
, P. G.
Szalay
, M.
Seth
, G. S.
Kedziora
, S.
Yabushita
, and Z.
Zhang
, “High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin-orbit CI and parallel CI density
,” Phys. Chem. Chem. Phys.
3
, 664
(2001
).16.
G.
Cui
and W.
Thiel
, “Generalized trajectory surface-hopping method for internal conversion and intersystem crossing
,” J. Chem. Phys.
141
, 124101
(2014
).17.
M.
Barbatti
, M.
Ruckenbauer
, F.
Plasser
, J.
Pittner
, G.
Granucci
, M.
Persico
, and H.
Lischka
, “Newton-X: A surface-hopping program for nonadiabatic molecular dynamics
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
, 26
–33
(2014
).18.
E.
Runge
and E. K. U.
Gross
, Phys. Rev. Lett.
52
, 997
–1000
(1984
).19.
M. E.
Casida
, Recent Advances in Density Functional Methods, Part I
(World Scientific
, Singapore
, 1995
), pp. 155
–192
.20.
A.
Dreuw
and M.
Head-Gordon
, Chem. Rev.
105
, 4009
–4037
(2005
).21.
F.
Furche
and R.
Ahlrichs
, “Adiabatic time-dependent density functional methods for excited state properties
,” J. Chem. Phys.
117
, 7433
–7447
(2002
).22.
M.
Chiba
, T.
Tsuneda
, and K.
Hirao
, “Excited state geometry optimizations by analytical energy gradient of long-range corrected time-dependent density functional theory
,” J. Chem. Phys.
124
, 144106
(2006
).23.
T.
Petrenko
, S.
Kossmann
, and F.
Neese
, “Efficient time-dependent density functional theory approximations for hybrid density functionals: Analytical gradients and parallelization
,” J. Chem. Phys.
134
, 054116
(2011
).24.
F.
Liu
, Z.
Gan
, Y.
Shao
, C. P.
Hsu
, A.
Dreuw
, M.
Head-Gordon
, B. T.
Miller
, B. R.
Brooks
, J. G.
Yu
, T. R.
Furlani
, and J.
Kong
, “A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm-Dancoff approximation
,” Mol. Phys.
108
, 2791
(2010
).25.
P. J.
Bruna
and S. D.
Peyerimhoff
, “Excited-state potentials
,” in Advances in Chemical Physics
(Wiley
, 2007
), pp. 1
–97
.26.
R.
McWeeny
and B. T.
Sutcliffe
, Methods of Molecular Quantum Mechanics
(Academic Press
, London
, 1969
).27.
Y.
Osamura
, Y.
Yamaguchi
, and H. F.
Schaefer
, “Generalization of analytic configuration interaction (Cl) gradient techniques for potential energy hypersurfaces, including a solution to the coupled perturbed Hartree–Fock equations for multiconfiguration SCF molecular wave functions
,” J. Chem. Phys.
77
, 383
(1982
).28.
M. G.
Delcey
, L.
Freitag
, T. B.
Pedersen
, F.
Aquilante
, R.
Lindh
, and L.
González
, “Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition: Geometry optimization and spin-state energetics of a ruthenium nitrosyl complex
,” J. Chem. Phys.
140
, 174103
(2014
).29.
J. W.
Snyder
, E. G.
Hohenstein
, N.
Luehr
, and T. J.
Martínez
, “An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units
,” J. Chem. Phys.
143
, 154107
(2015
).30.
P.
Celani
and H.-J.
Werner
, “Analytical energy gradients for internally contracted second-order multireference perturbation theory
,” J. Chem. Phys.
119
, 5044
(2003
).31.
B.
Vlaisavljevich
and T.
Shiozaki
, “Nuclear energy gradients for internally contracted complete active space second-order perturbation theory: Multistate extensions
,” J. Chem. Theory Comput.
12
, 3781
(2016
); e-print arXiv:1606.01273.32.
C.
Haettig
and F.
Weigend
, “CC2 excitation energy calculations on large molecules using the resolution of the identity approximation
,” J. Chem. Phys.
113
, 5154
(2000
).33.
A.
Köhn
and C.
Hättig
, “Analytic gradients for excited states in the coupled-cluster model CC2 employing the resolution-of-the-identity approximation
,” J. Chem. Phys.
119
, 5021
(2003
).34.
C.
Hättig
, “Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2)
,” Adv. Quantum Chem.
50
, 37
(2005
).35.
K.
Ledermüller
and M.
Schütz
, “Local CC2 response method based on the Laplace transform: Analytic energy gradients for ground and excited states
,” J. Chem. Phys.
140
, 164113
(2014
).36.
S. V.
Levchenko
, T.
Wang
, and A. I.
Krylov
, “Analytic gradients for the spin-conserving and spin-flipping equation-of-motion coupled-cluster models with single and double substitutions
,” J. Chem. Phys.
122
, 224106
(2005
).37.
H.
Sekino
and R. J.
Bartlett
, Int. J. Quant. Chem. Symp.
26
, 255
(1984
).38.
J. F.
Stanton
and R. J.
Bartlett
, J. Chem. Phys.
98
, 7029
(1993
).39.
E.
Dalgaard
and H. J.
Monkhorst
, Phys. Rev. A
28
, 1217
(1983
).40.
H.
Koch
and P.
Jørgensen
, J. Chem. Phys.
93
, 3333
(1990
).41.
J. F.
Stanton
and J.
Gauss
, “Analytic energy derivatives for ionized states described by the equation-of-motion coupled cluster method
,” J. Chem. Phys.
101
, 8938
(1994
).42.
J. F.
Stanton
and J.
Gauss
, “Analytic energy gradients for the equation-of-motion coupled-cluster method: Implementation and application to the HCN/HNC system
,” J. Chem. Phys.
100
, 4695
(1994
).43.
M.
Kállay
and J.
Gauss
, “Calculation of excited-state properties using general coupled-cluster and configuration-interaction models
,” J. Chem. Phys.
121
, 9257
(2004
).44.
J.
Schirmer
and A. B.
Trofimov
, J. Chem. Phys.
120
, 11449
(2004
).45.
J.
Schirmer
and G.
Angonoa
, “On green’s function calculations of the static self-energy part, the ground state energy and expectation values
,” J. Chem. Phys.
91
, 1754
–1761
(1989
).46.
M. J.
Frisch
, M.
Head-Gordon
, and J. A.
Pople
, “A direct MP2 gradient method
,” Chem. Phys. Lett.
166
, 275
–280
(1990
).47.
J.
Gauss
and D.
Cremer
, “Implementation of analytical energy gradients at third- and fourth-order Møller-Plesset perturbation theory
,” Chem. Phys. Lett.
138
, 131
–140
(1987
).48.
Y.
Shao
, Z.
Gan
, E.
Epifanovsky
, A. T.
Gilbert
, M.
Wormit
, J.
Kussmann
, A. W.
Lange
, A.
Behn
, J.
Deng
, X.
Feng
, D.
Ghosh
, M.
Goldey
, P. R.
Horn
, L. D.
Jacobson
, I.
Kaliman
, R. Z.
Khaliullin
, T.
Kús
, A.
Landau
, J.
Liu
, E. I.
Proynov
, Y. M.
Rhee
, R. M.
Richard
, M. A.
Rohrdanz
, R. P.
Steele
, E. J.
Sundstrom
, H. L. W.
III, P. M.
Zimmerman
, D.
Zuev
, B.
Albrecht
, E.
Alguire
, B.
Austin
, G. J. O.
Beran
, Y. A.
Bernard
, E.
Berquist
, K.
Brandhorst
, K. B.
Bravaya
, S. T.
Brown
, D.
Casanova
, C.-M.
Chang
, Y.
Chen
, S. H.
Chien
, K. D.
Closser
, D. L.
Crittenden
, M.
Diedenhofen
, R. A.
DiStasio
, Jr., H.
Do
, A. D.
Dutoi
, R. G.
Edgar
, S.
Fatehi
, L.
Fusti-Molnar
, A.
Ghysels
, A.
Golubeva-Zadorozhnaya
, J.
Gomes
, M. W.
Hanson-Heine
, P. H.
Harbach
, A. W.
Hauser
, E. G.
Hohenstein
, Z. C.
Holden
, T.-C.
Jagau
, H.
Ji
, B.
Kaduk
, K.
Khistyaev
, J.
Kim
, J.
Kim
, R. A.
King
, P.
Klunzinger
, D.
Kosenkov
, T.
Kowalczyk
, C. M.
Krauter
, K. U.
Lao
, A. D.
Laurent
, K. V.
Lawler
, S. V.
Levchenko
, C. Y.
Lin
, F.
Liu
, E.
Livshits
, R. C.
Lochan
, A.
Luenser
, P.
Manohar
, S. F.
Manzer
, S.-P.
Mao
, N.
Mardirossian
, A. V.
Marenich
, S. A.
Maurer
, N. J.
Mayhall
, E.
Neuscamman
, C. M.
Oana
, R.
Olivares-Amaya
, D. P.
O’Neill
, J. A.
Parkhill
, T. M.
Perrine
, R.
Peverati
, A.
Prociuk
, D. R.
Rehn
, E.
Rosta
, N. J.
Russ
, S. M.
Sharada
, S.
Sharma
, D. W.
Small
, A.
Sodt
, T.
Stein
, D.
Stück
, Y.-C.
Su
, A. J.
Thom
, T.
Tsuchimochi
, V.
Vanovschi
, L.
Vogt
, O.
Vydrov
, T.
Wang
, M. A.
Watson
, J.
Wenzel
, A.
White
, C. F.
Williams
, J.
Yang
, S.
Yeganeh
, S. R.
Yost
, Z.-Q.
You
, I. Y.
Zhang
, X.
Zhang
, Y.
Zhao
, B. R.
Brooks
, G. K.
Chan
, D. M.
Chipman
, C. J.
Cramer
, W. A.
Goddard
III, M. S.
Gordon
, W. J.
Hehre
, A.
Klamt
, H. F.
Schaefer
III, M. W.
Schmidt
, C. D.
Sherrill
, D. G.
Truhlar
, A.
Warshel
, X.
Xu
, A.
Aspuru-Guzik
, R.
Baer
, A. T.
Bell
, N. A.
Besley
, J.-D.
Chai
, A.
Dreuw
, B. D.
Dunietz
, T. R.
Furlani
, S. R.
Gwaltney
, C.-P.
Hsu
, Y.
Jung
, J.
Kong
, D. S.
Lambrecht
, W.
Liang
, C.
Ochsenfeld
, V. A.
Rassolov
, L. V.
Slipchenko
, J. E.
Subotnik
, T. V.
Voorhis
, J. M.
Herbert
, A. I.
Krylov
, P. M.
Gill
, and M.
Head-Gordon
, “Advances in molecular quantum chemistry contained in the q-chem 4 program package
,” Mol. Phys.
113
, 184
–215
(2015
).49.
M.
Wormit
, D. R.
Rehn
, P. H.
Harbach
, J.
Wenzel
, C. M.
Krauter
, E.
Epifanovsky
, and A.
Dreuw
, “Investigating excited electronic states using the algebraic diagrammatic construction (ADC) approach of the polarisation propagator
,” Mol. Phys.
112
, 774
–784
(2014
).50.
E.
Epifanovsky
, M.
Wormit
, T.
Kuś
, A.
Landau
, D.
Zuev
, K.
Khistyaev
, P.
Manohar
, I.
Kaliman
, A.
Dreuw
, and A. I.
Krylov
, “New implementation of high-level correlated methods using a general block tensor library for high-performance electronic structure calculations
,” J. Comput. Chem.
34
, 2293
–2309
(2013
).51.
E. R.
Davidson
, J. Comput. Phys.
17
, 87
–94
(1975
).52.
P.
Pulay
, “Convergence acceleration of iterative sequences. The case of SCF iteration
,” Chem. Phys. Lett.
73
, 393
–398
(1980
).53.
D.
Rehn
, Ph.D. dissertation (Universität Heidelberg
, 2015
).54.
T. H.
Dunning
, Jr., J. Chem. Phys.
90
, 1007
(1989
).55.
D. E.
Woon
and T. H.
Dunning
, “Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties
,” J. Chem. Phys.
100
, 2975
–2988
(1994
).56.
D. E.
Woon
and T. H.
Dunning
, “Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
,” J. Chem. Phys.
98
, 1358
–1371
(1993
).57.
F.
Zhang
, D.
Wu
, Y.
Xu
, and X.
Feng
, “Thiophene-based conjugated oligomers for organic solar cells
,” J. Mater. Chem.
21
, 17590
–17600
(2011
).58.
D.
Bélanger
, “Polythiophenes as active electrode materials for electrochemical capacitors
,” in Handbook of Thiophene-Based Materials
(John Wiley & Sons
, 2009
), pp. 577
–594
.59.
A.
Mishra
, C.-Q.
Ma
, J. L.
Segura
, and P.
Bäuerle
, Functional Oligothiophene-Based Materials: Nanoarchitectures and Applications
(John Wiley & Sons
, 2009
), pp. 1
–155
.60.
A.
Åslund
, C. J.
Sigurdson
, T.
Klingstedt
, S.
Grathwohl
, T.
Bolmont
, D. L.
Dickstein
, E.
Glimsdal
, S.
Prokop
, M.
Lindgren
, P.
Konradsson
, D. M.
Holtzman
, P. R.
Hof
, F. L.
Heppner
, S.
Gandy
, M.
Jucker
, A.
Aguzzi
, P.
Hammarström
, and K. P. R.
Nilsson
, “Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses
,” ACS Chem. Biol.
4
, 673
–684
(2009
).61.
K. P.
Huber
and G.
Herzberg
, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules
(Van Nostrand
, New York
, 1979
).62.
C. S.
Page
and M.
Olivucci
, “Ground and excited state CASPT2 geometry optimizations of small organic molecules
,” J. Comput. Chem.
24
, 298
–309
(2003
).63.
M.
Rubio
, M.
Merchan
, R.
Pou-Amerigo
, and E.
Orti
, “The low-lying excited states of 2,2′-bithiophene: A theoretical analysis
,” ChemPhysChem
4
, 1308
–1315
(2003
).64.
J. E.
Chadwick
and B. E.
Kohler
, “Optical spectra of isolated s-cis- and s-trans-bithiophene: Torsional potential in the ground and excited states
,” J. Phys. Chem.
98
, 3631
–3637
(1994
).65.
D.
Birnbaum
and B. E.
Kohler
, “Location of a 1ag state in bithiophene
,” J. Chem. Phys.
96
, 2492
–2495
(1992
).66.
T. H.
Dunning
and K. A.
Peterson
, “Use of Möller-Plesset perturbation theory in molecular calculations: Spectroscopic constants of first row diatomic molecules
,” J. Chem. Phys.
108
, 4761
–4771
(1998
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.