Markov state models are to date the gold standard for modeling molecular kinetics since they enable the identification and analysis of metastable states and related kinetics in a very instructive manner. The state-of-the-art Markov state modeling methods and tools are very well developed for the modeling of reversible processes in closed equilibrium systems. On the contrary, they are largely not well suited to deal with nonreversible or even nonautonomous processes of nonequilibrium systems. Thus, we generalized the common Robust Perron Cluster Cluster Analysis (PCCA+) method to enable straightforward modeling of nonequilibrium systems as well. The resulting Generalized PCCA (G-PCCA) method readily handles equilibrium as well as nonequilibrium data by utilizing real Schur vectors instead of eigenvectors. This is implemented in the G-PCCA algorithm that enables the semiautomatic coarse graining of molecular kinetics. G-PCCA is not limited to the detection of metastable states but also enables the identification and modeling of cyclic processes. This is demonstrated by three typical examples of nonreversible systems.

1.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
North Holland
,
1992
).
2.
C.
Gardiner
,
Stochastic Methods: A Handbook for the Natural and Social Sciences
(
Springer
,
2009
).
3.
C.
Schütte
, “
Conformational dynamics: Modelling, theory, algorithm and application to biomolecules
,” Habilitation thesis,
Freie Universität Berlin
,
1999
.
4.
P.
Deuflhard
,
W.
Huisinga
,
A.
Fischer
, and
C.
Schütte
,
Linear Algebra Appl.
315
,
39
(
2000
).
5.
P.
Deuflhard
and
M.
Weber
,
Linear Algebra Appl.
398
,
161
(
2005
), special Issue on Matrices and Mathematical Biology.
6.
J.
Chodera
,
N.
Singhal
,
V.
Pande
,
K.
Dill
, and
W.
Swope
,
J. Chem. Phys.
126
,
155101
(
2007
).
7.
F.
Noé
,
J. Chem. Phys.
128
,
244103
(
2008
).
8.
C.
Schütte
and
M.
Sarich
,
Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches
, Courant Lecture Notes (
American Mathematical Society
,
2013
), Vol. 24.
9.
G. R.
Bowman
,
V. S.
Pande
, and
F.
Noé
(
Springer
,
2014
), Vol.
797
.
10.
G.
Froyland
and
P.
Koltai
,
Nonlinearity
30
,
1948
(
2017
); e-print arXiv:1511.07272v1.
11.
P.
Koltai
,
H.
Wu
,
F.
Noé
, and
C.
Schütte
,
Computation
6
,
22
(
2018
); e-print arXiv:1801.04254.
12.
C.
Chicone
and
Y.
Latushkin
,
Evolution Semigroups in Dynamical Systems and Differential Equations
, Mathematical Surveys and Monographs (
American Mathematical Soc.
,
1999
), Vol. 70.
13.
S.
Kube
and
M.
Weber
,
J. Chem. Phys.
126
,
024103
(
2007
).
14.
C.
Schütte
,
W.
Huisinga
, and
P.
Deuflhard
, in
Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems
, edited by
B.
Fiedler
(
Springer
,
2001
), pp.
191
223
.
15.
W. C.
Swope
,
J. W.
Pitera
, and
F.
Suits
,
J. Phys. Chem. B
108
,
6571
(
2004
).
16.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
17.
N.-V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
(
2008
).
18.
B.
Reuter
,
M.
Weber
,
K.
Fackeldey
,
S.
Röblitz
, and
M. E.
Garcia
,
J. Chem. Theory Comput.
14
,
3579
(
2018
).
19.
K.
Fackeldey
and
M.
Weber
,
Big Data Clustering: Data Preprocessing, Variable Selection, and Dimension Reduction
, WIAS Report, edited by
H.-J.
Mucha
(
WIAS
,
2017
), pp.
70
80
.
20.
M.
Weber
and
K.
Fackeldey
,
Multiscale Model. Simul.
12
,
318
(
2014
).
21.
M.
Weber
and
S.
Kube
,
AIP Conf. Proc.
1048
,
593
596
(
2008
).
22.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
, 3rd ed. (
Johns Hopkins University Press
,
Baltimore and London
,
1996
), Chap. 7, pp.
341
342
.
23.
M.
Ellowitz
and
A.
Leibler
,
Nature
403
,
335
(
2000
).
24.
R.
Lidl
and
H.
Niederreiter
,
Finite Fields
(
Cambridge University Press
,
Cambridge
,
1984
).
25.
H.
Niederreiter
,
J. Number Theory
30
,
51
(
1988
).
26.
Mathworks, Matlab simbiology version 4.2,
2012
.
27.
M.
Weber
, “
Meshless methods in conformation dynamics
,” Ph.D. thesis,
Freie Universität Berlin
,
2006
.
28.
M.
Coles
,
W.
Bicknell
,
A. A.
Watson
,
D. P.
Fairlie
, and
D. J.
Craik
,
Biochemistry
37
,
11064
(
1998
).
29.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
30.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
); e-print arXiv:0803.4060v1.
31.
M. T.
Gallo
,
B. J.
Grant
,
M. L.
Teodoro
,
J.
Melton
,
P.
Cieplak
,
G. N.
Phillips
, and
B.
Stec
,
Mol. Simul.
35
,
349
(
2009
).
32.
H.
Wang
,
C.
Schütte
,
G.
Ciccotti
, and
L.
Delle Site
,
J. Chem. Theory Comput.
10
,
1376
(
2014
), e-print arXiv:1309.1406.
33.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
,
E.
Lindah
, and
E.
Lindahl
,
SoftwareX
1-2
,
19
(
2015
); e-print arXiv:1503.05249v1.
34.
K.
Lindorff-Larsen
,
S.
Piana
,
K.
Palmo
,
P.
Maragakis
,
J. L.
Klepeis
,
R. O.
Dror
, and
D. E.
Shaw
,
Proteins: Struct., Funct., Bioinf.
78
,
1950
(
2010
).
35.
W.
Kabsch
and
C.
Sander
,
Biopolymers
22
,
2577
(
1983
); e-print arXiv:83/122577-6 [0006-3525].
36.
G.
Pérez-Hernéndez
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
,
J. Chem. Phys.
139
,
015102
(
2013
); e-print arXiv:1302.6614v1.
37.
M. K.
Scherer
,
B.
Trendelkamp-Schroer
,
F.
Paul
,
G.
Pérez-Hernández
,
M.
Hoffmann
,
N.
Plattner
,
C.
Wehmeyer
,
J.-H.
Prinz
, and
F.
Noé
,
J. Chem. Theory Comput.
11
,
5525
(
2015
).
38.
M.
Weber
,
W.
Rungsarityotin
, and
A.
Schliep
, in
From Data and Information Analysis to Knowledge Engineering
, edited by
M.
Spiliopoulou
,
R.
Kruse
,
C.
Borgelt
,
A.
Nürnberger
, and
W.
Gaul
(
Springer, Berlin/Heidelberg
,
Germany
,
2006
), pp.
103
110
.
39.
S.
Röblitz
and
M.
Weber
,
Adv. Data Anal. Classif.
7
,
147
(
2013
).
You do not currently have access to this content.