This work describes a domain-based local pair natural orbital (DLPNO) implementation of the equation of motion coupled cluster method for the computation of electron affinities (EAs) including single and double excitations. Similar to our earlier work on ionization potentials (IPs), the method reported in this study uses the ground state DLPNO framework and extends it to the electron attachment problem. While full linear scaling could not be achieved as in the IP case, leaving the Fock/Koopmans’ contributions in the canonical basis and using a tighter threshold for singles PNOs allows us to compute accurate EAs and retain most of the efficiency of the DLPNO technique. Thus as in the IP case, the ground state truncation parameters are sufficient to control the accuracy of the computed EA values, although a new set of integrals for singles PNOs must be generated at the DLPNO integral transformation step. Using standard settings, our method reproduces the canonical results with a maximum absolute deviation of 49 meV for bound states of a test set of 24 molecules. Using the same settings, a calculation involving more than 4500 basis functions, including diffuse functions, takes four days on four cores, with only 48 min spent in the EA module itself.

1.
M.-C.
Kim
,
E.
Sim
, and
K.
Burke
,
J. Chem. Phys.
134
,
171103
(
2011
).
2.
K. D.
Jordan
,
V. K.
Voora
, and
J.
Simons
,
Theor. Chem. Acc.
133
,
1445
(
2014
).
3.
V. K.
Voora
,
A.
Kairalapova
,
T.
Sommerfeld
, and
K. D.
Jordan
,
J. Chem. Phys.
147
,
214114
(
2017
).
4.
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
2014
).
5.
D.
Danovich
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
377
(
2011
).
6.
D. J.
Rowe
,
Rev. Mod. Phys.
40
,
153
(
1968
).
7.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
9.
M.
Nooijen
and
R. J.
Bartlett
,
J. Chem. Phys.
102
,
3629
(
1995
).
10.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
113
,
8490
(
2000
).
11.
A. K.
Dutta
,
F.
Neese
, and
R.
Izsák
,
J. Chem. Phys.
144
,
034102
(
2016
).
12.
M.
Nooijen
and
J. G.
Snijders
,
J. Chem. Phys.
102
,
1681
(
1995
).
13.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
103
,
1064
(
1995
).
14.
A. K.
Dutta
,
N.
Vaval
, and
S.
Pal
,
J. Chem. Theory Comput.
11
,
2461
(
2015
).
15.
A. K.
Dutta
,
N.
Vaval
, and
S.
Pal
,
J. Chem. Theory Comput.
9
,
4313
(
2013
).
16.
A. K.
Dutta
,
N.
Vaval
, and
S.
Pal
,
Int. J. Quantum Chem.
118
,
e25594
(
2018
).
17.
H.-J.
Werner
,
C.
Köppl
,
Q.
Ma
, and
M.
Schwilk
, “
Explicitly correlated local electron correlation methods
,” in
Fragmentation
(
John Wiley & Sons
,
2017
), pp.
1
79
.
18.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
19.
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
120
,
6832
(
2004
).
20.
H.
Stoll
,
J. Chem. Phys.
97
,
8449
(
1992
).
21.
J.
Friedrich
,
M.
Hanrath
, and
M.
Dolg
,
J. Chem. Phys.
126
,
154110
(
2007
).
23.
K.
Kristensen
,
M.
Ziolkowski
,
B.
Jansík
,
T.
Kjaergaard
, and
P.
Jorgensen
,
J. Chem. Theory Comput.
7
,
1677
(
2011
).
24.
I.-M.
Hoyvik
,
K.
Kristensen
,
B.
Jansik
, and
P.
Jorgensen
,
J. Chem. Phys.
136
,
014105
(
2012
).
25.
T.
Kjaergaard
,
P.
Baudin
,
D.
Bykov
,
K.
Kristensen
, and
P.
Jørgensen
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
7
,
e1319
(
2017
).
26.
J. J.
Eriksen
,
P.
Baudin
,
P.
Ettenhuber
,
K.
Kristensen
,
T.
Kjærgaard
, and
P.
Jørgensen
,
J. Chem. Theory Comput.
11
,
2984
(
2015
).
27.
S.
Li
,
J.
Ma
, and
Y.
Jiang
,
J. Comput. Chem.
23
,
237
(
2002
).
28.
Z.
Ni
,
W.
Li
, and
S.
Li
,
J. Comput. Chem.
40
,
1130
(
2019
).
29.
W.
Li
,
P.
Piecuch
,
J. R.
Gour
, and
S.
Li
,
J. Chem. Phys.
131
,
114109
(
2009
).
30.
Z.
Rolik
and
M.
Kállay
,
J. Chem. Phys.
135
,
104111
(
2011
).
31.
C.
Hampel
and
H.-J.
Werner
,
J. Chem. Phys.
104
,
6286
(
1996
).
32.
M.
Schütz
and
H.-J.
Werner
,
J. Chem. Phys.
114
,
661
(
2001
).
33.
J.
Yang
,
Y.
Kurashige
,
F. R.
Manby
, and
G. K. L.
Chan
,
J. Chem. Phys.
134
,
044123
(
2011
).
34.
J.
Yang
,
G. K.-L.
Chan
,
F. R.
Manby
,
M.
Schütz
, and
H.-J.
Werner
,
J. Chem. Phys.
136
,
144105
(
2012
).
35.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
,
J. Chem. Phys.
130
,
114108
(
2009
).
36.
T.
Crawford
and
R. A.
King
,
Chem. Phys. Lett.
366
,
611
(
2002
).
37.
T.
Korona
and
H.-J.
Werner
,
J. Chem. Phys.
118
,
3006
(
2003
).
38.
D.
Kats
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
125
,
104106
(
2006
).
39.
B.
Helmich
and
C.
Hättig
,
J. Chem. Phys.
135
,
214106
(
2011
).
40.
B.
Helmich
and
C.
Hättig
,
J. Chem. Phys.
139
,
084114
(
2013
).
41.
B.
Helmich
and
C.
Hättig
,
Comput. Theor. Chem.
1040
,
35
(
2014
), excited states: From isolated molecules to complex environments.
42.
R. A.
Mata
and
H.
Stoll
,
J. Chem. Phys.
134
,
034122
(
2011
).
43.
P.
Baudin
and
K.
Kristensen
,
J. Chem. Phys.
144
,
224106
(
2016
).
44.
S.
Höfener
and
W.
Klopper
,
Chem. Phys. Lett.
679
,
52
(
2017
).
45.
I.-M.
Hoyvik
,
R. H.
Myhre
, and
H.
Koch
,
J. Chem. Phys.
146
,
144109
(
2017
).
46.
D.
Mester
,
P. R.
Nagy
, and
M.
Kallay
,
J. Chem. Phys.
146
,
194102
(
2017
).
47.
M.
Schütz
and
H.-J.
Werner
,
Chem. Phys. Lett.
318
,
370
(
2000
).
48.
M.
Schütz
,
J. Chem. Phys.
113
,
9986
(
2000
).
49.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
,
J. Chem. Phys.
131
,
064103
(
2009
).
50.
A.
Hansen
,
D. G.
Liakos
, and
F.
Neese
,
J. Chem. Phys.
135
,
214102
(
2011
).
51.
C.
Riplinger
and
F.
Neese
,
J. Chem. Phys.
138
,
034106
(
2013
).
52.
H.-J.
Werner
,
J. Chem. Phys.
145
,
201101
(
2016
).
53.
G.
Schmitz
,
C.
Hättig
, and
D. P.
Tew
,
Phys. Chem. Chem. Phys.
16
,
22167
(
2014
).
54.
Q.
Ma
and
H.-J.
Werner
,
J. Chem. Theory Comput.
15
,
1044
(
2019
).
55.
M.
Schwilk
,
D.
Usvyat
, and
H.-J.
Werner
,
J. Chem. Phys.
142
,
121102
(
2015
).
56.
Q.
Ma
,
M.
Schwilk
,
C.
Köppl
, and
H.-J.
Werner
,
J. Chem. Theory Comput.
13
,
4871
(
2017
).
57.
M.
Schwilk
,
Q.
Ma
,
C.
Köppl
, and
H.-J.
Werner
,
J. Chem. Theory Comput.
13
,
3650
(
2017
).
58.
Q.
Ma
and
H.-J.
Werner
,
J. Chem. Theory Comput.
14
,
198
(
2017
).
59.
W.
Kutzelnigg
,
Theor. Chim. Acta
1
,
327
(
1963
).
60.
R.
Ahlrichs
,
F.
Driessler
,
H.
Lischka
,
V.
Staemmler
, and
W.
Kutzelnigg
,
J. Chem. Phys.
62
,
1235
(
1975
).
61.
W.
Meyer
,
Int. J. Quantum Chem.
5
,
341
(
1971
).
62.
R.
Fink
and
V.
Staemmler
,
Theor. Chim. Acta
87
,
129
(
1993
).
63.
C.
Edmiston
and
M.
Krauss
,
J. Chem. Phys.
45
,
1833
(
1966
).
64.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
65.
E.
Baerends
,
D.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
,
41
(
1973
).
66.
O.
Vahtras
,
J.
Almlöf
, and
M.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
67.
M.
Schütz
and
F. R.
Manby
,
Phys. Chem. Chem. Phys.
5
,
3349
(
2003
).
68.
P.
Pulay
and
S.
Saebø
,
Theor. Chim. Acta
69
,
357
(
1986
).
69.
S.
Saebo
and
P.
Pulay
,
J. Chem. Phys.
86
,
914
(
1987
).
70.
P.
Pinski
,
C.
Riplinger
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
143
,
034108
(
2015
).
71.
O.
Demel
,
J.
Pittner
, and
F.
Neese
,
J. Chem. Theory Comput.
11
,
3104
(
2015
).
72.
Y.
Guo
,
K.
Sivalingam
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
144
,
094111
(
2016
).
73.
J.
Brabec
,
J.
Lang
,
M.
Saitow
,
J.
Pittner
,
F.
Neese
, and
O.
Demel
,
J. Chem. Theory Comput.
14
,
1370
(
2018
).
74.
C.
Riplinger
,
B.
Sandhoefer
,
A.
Hansen
, and
F.
Neese
,
J. Chem. Phys.
139
,
134101
(
2013
).
75.
Y.
Guo
,
C.
Riplinger
,
U.
Becker
,
D. G.
Liakos
,
Y.
Minenkov
,
L.
Cavallo
, and
F.
Neese
,
J. Chem. Phys.
148
,
011101
(
2018
).
76.
M.
Sparta
,
M.
Retegan
,
P.
Pinski
,
C.
Riplinger
,
U.
Becker
, and
F.
Neese
,
J. Chem. Theory Comput.
13
,
3198
(
2017
).
77.
D.
Datta
,
S.
Kossmann
, and
F.
Neese
,
J. Chem. Phys.
145
,
114101
(
2016
).
78.
M.
Saitow
,
U.
Becker
,
C.
Riplinger
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
146
,
164105
(
2017
).
79.
M.
Saitow
and
F.
Neese
,
J. Chem. Phys.
149
,
034104
(
2018
).
80.
G.
Schmitz
and
C.
Hättig
,
J. Chem. Phys.
145
,
234107
(
2016
).
81.
G.
Schmitz
and
C.
Hättig
,
J. Chem. Theory Comput.
13
,
2623
(
2017
).
82.
D. P.
Tew
and
C.
Hättig
,
Int. J. Quantum Chem.
113
,
224
(
2013
).
83.
M. S.
Frank
,
G.
Schmitz
, and
C.
Hättig
,
Mol. Phys.
115
,
343
(
2017
).
84.
Q.
Ma
and
H.-J.
Werner
,
J. Chem. Theory Comput.
11
,
5291
(
2015
).
85.
H.-J.
Werner
,
G.
Knizia
,
C.
Krause
,
M.
Schwilk
, and
M.
Dornbach
,
J. Chem. Theory Comput.
11
,
484
(
2015
).
86.
M. S.
Frank
and
C.
Hättig
,
J. Chem. Phys.
148
,
134102
(
2018
).
87.
C.
Peng
,
M. C.
Clement
, and
E. F.
Valeev
,
J. Chem. Theory Comput.
14
,
5597
(
2018
).
88.
A. K.
Dutta
,
F.
Neese
, and
R.
Izsák
,
J. Chem. Phys.
145
,
034102
(
2016
).
89.
A. K.
Dutta
,
M.
Nooijen
,
F.
Neese
, and
R.
Izsák
,
J. Chem. Theory Comput.
14
,
72
(
2017
).
90.
A. K.
Dutta
,
F.
Neese
, and
R.
Izsák
,
J. Chem. Phys.
146
,
214111
(
2017
).
91.
M.
Nooijen
and
R. J.
Bartlett
,
J. Chem. Phys.
107
,
6812
(
1997
).
92.
A. K.
Dutta
,
M.
Nooijen
,
F.
Neese
, and
R.
Izsák
,
J. Chem. Phys.
146
,
074103
(
2017
).
93.
K.
Hirao
and
H.
Nakatsuji
,
J. Comput. Phys.
45
,
246
(
1982
).
94.
C.
Riplinger
,
P.
Pinski
,
U.
Becker
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
144
,
024109
(
2016
).
95.
A.
Landau
,
K.
Khistyaev
,
S.
Dolgikh
, and
A. I.
Krylov
,
J. Chem. Phys.
132
,
014109
(
2010
).
96.
D. G.
Liakos
,
M.
Sparta
,
M. K.
Kesharwani
,
J. M. L.
Martin
, and
F.
Neese
,
J. Chem. Theory Comput.
11
,
1525
(
2015
).
97.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1327
(
2018
).
98.
R. M.
Richard
,
M. S.
Marshall
,
O.
Dolgounitcheva
,
J.
Ortiz
,
J.-L.
Brédas
,
N.
Marom
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
12
,
595
(
2016
).
99.
T.-C.
Jagau
,
J. Chem. Phys.
148
,
024104
(
2018
).
100.
T. C.
Jagau
,
K. B.
Bravaya
, and
A.
Krylov
,
Annu. Rev. Phys. Chem.
68
,
525
(
2017
).
101.
Y.
Sajeev
,
A.
Ghosh
,
N.
Vaval
, and
S.
Pal
,
Int. Rev. Phys. Chem.
33
,
397
(
2014
).
102.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
,
Chem. Phys.
356
,
98
(
2009
).
103.
R.
Izsák
and
F.
Neese
,
J. Chem. Phys.
135
,
144105
(
2011
).
104.
R.
Izsák
and
F.
Neese
,
Mol. Phys.
111
,
1190
(
2013
).
105.
A. K.
Dutta
,
F.
Neese
, and
R.
Izsák
,
Mol. Phys.
116
,
1428
(
2017
).
106.
Y.
Umena
,
K.
Kawakami
,
J.-R.
Shen
, and
N.
Kamiya
,
Nature
473
,
55
(
2011
).

Supplementary Material

You do not currently have access to this content.