A popular approach to analyze the dynamics of high-dimensional many-body systems, such as macromolecules, is to project the trajectories onto a space of slowly varying collective variables, where subsequent analyses are made, such as clustering or estimation of free energy profiles or Markov state models. However, existing “dynamical” dimension reduction methods, such as the time-lagged independent component analysis (TICA), are only valid if the dynamics obeys detailed balance (microscopic reversibility) and typically require long, equilibrated simulation trajectories. Here, we develop a dimension reduction method for non-equilibrium dynamics based on the recently developed Variational Approach for Markov Processes (VAMP) by Wu and Noé. VAMP is illustrated by obtaining a low-dimensional description of a single file ion diffusion model and by identifying long-lived states from molecular dynamics simulations of the KcsA channel protein in an external electrochemical potential. This analysis provides detailed insights into the coupling of conformational dynamics, the configuration of the selectivity filter, and the conductance of the channel. We recommend VAMP as a replacement for the less general TICA method.

1.
C.
Schütte
,
A.
Fischer
,
W.
Huisinga
, and
P.
Deuflhard
,
J. Comput. Phys.
151
,
146
(
1999
).
2.
N.
Singhal
,
C. D.
Snow
, and
V. S.
Pande
,
J. Chem. Phys.
121
,
415
(
2004
).
3.
F.
Noé
,
I.
Horenko
,
C.
Schütte
, and
J. C.
Smith
,
J. Chem. Phys.
126
,
155102
(
2007
).
4.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
5.
N.-V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
(
2008
).
6.
M. A.
Rohrdanz
,
W.
Zheng
,
M.
Maggioni
, and
C.
Clementi
,
J. Chem. Phys.
134
,
124116
(
2011
).
7.
J.
Preto
and
C.
Clementi
,
Phys. Chem. Chem. Phys.
16
,
19181
(
2014
).
8.
W.
Zheng
,
B.
Qi
,
M. A.
Rohrdanz
,
A.
Caflisch
,
A. R.
Dinner
, and
C.
Clementi
,
J. Phys. Chem. B
115
,
13065
(
2011
).
9.
M. A.
Rohrdanz
,
W.
Zheng
, and
C.
Clementi
,
Annu. Rev. Phys. Chem.
64
,
295
(
2013
).
10.
B.
Peters
and
B. L.
Trout
,
J. Chem. Phys.
125
,
054108
(
2006
).
11.
F.
Noé
and
C.
Clementi
,
Curr. Opin. Struct. Biol.
43
,
141
(
2017
).
12.
C.
Schütte
,
W.
Huisinga
, and
P.
Deuflhard
, “
Transfer operator approach to conformational dynamics in biomolecular systems
,” Technical Report No. SC 99-36,
Konrad-Zuse-Zentrum für Informationstechnik
,
Berlin-Dahlem, Germany
,
1999
.
13.
F.
Noé
and
F.
Nüske
,
Multiscale Model. Simul.
11
,
635
(
2013
).
14.
F.
Nüske
,
B. G.
Keller
,
G.
Pérez-Hernández
,
A. S. J. S.
Mey
, and
F.
Noé
,
J. Chem. Theory Comput.
10
,
1739
(
2014
).
15.
L.
Molgedey
and
H. G.
Schuster
,
Phys. Rev. Lett.
72
,
3634
(
1994
).
16.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
,
J. Chem. Phys.
139
,
015102
(
2013
).
17.
C. R.
Schwantes
and
V. S.
Pande
,
J. Chem. Theory Comput.
9
,
2000
(
2013
).
18.
H.
Wu
,
F.
Nüske
,
F.
Paul
,
S.
Klus
,
P.
Koltai
, and
F.
Noé
,
J. Chem. Phys.
146
,
154104
(
2017
).
19.
H.
Wu
and
F.
Noé
, “
Variational approach for learning Markov processes from time series data
,” e-print arXiv:1707.04659 (
2017
).
20.
B. L. R.
De Moor
and
G. H.
Golub
, “
The restricted singular value decomposition: Properties and applications
,” Technical Report No. MA-89-03,
Department of Computer Science, Stanford University
,
Stanford, CA, USA
,
1989
.
21.
H.
Abdi
, ‘
Singular value decomposition (SVD) and generalized singular value decomposition (GSVD)
,” in
Encyclopedia of Measurement and Statistics
(
SAGE Publications
,
Thousand Oaks, CA, USA
,
2007
), pp.
907
912
.
22.
A.
Mardt
,
L.
Pasquali
,
H.
Wu
, and
F.
Noé
,
Nat. Commun.
9
,
4443
(
2018
).
23.
D. A.
Köpfer
,
C.
Song
,
T.
Gruene
,
G. M.
Sheldrick
,
U.
Zachariae
, and
B. L.
de Groot
,
Science
346
,
352
(
2014
).
24.
F.
Noé
,
S.
Doose
,
I.
Daidone
,
M.
Löllmann
,
M.
Sauer
,
J. D.
Chodera
, and
J. C.
Smith
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
4822
(
2011
).
25.
26.
J. H.
Tu
,
C. W.
Rowley
,
D. M.
Luchtenburg
,
S. L.
Brunton
, and
J. N.
Kutz
,
J. Comput. Dyn.
1
,
391
(
2014
).
27.
F.
Noé
and
C.
Clementi
,
J. Chem. Theory Comput.
11
,
5002
(
2015
).
28.
F.
Noé
,
R.
Banisch
, and
C.
Clementi
,
J. Chem. Theory Comput.
12
,
5620
(
2016
).
29.
P.
Koltai
,
H.
Wu
,
F.
Noé
, and
C.
Schütte
,
Computation
6
,
22
(
2018
).
30.
A.
Hyvärinen
,
J.
Karhunen
, and
E.
Oja
, in
Independent Component Analysis
(
John Wiley & Sons
,
New York, USA
,
2001
), Chap. 6.4, pp.
140
141
.
31.
32.
R. T.
McGibbon
and
V. S.
Pande
,
J. Chem. Phys.
142
,
124105
(
2015
).
33.

This sum is by definition the r’th power of the so-called r-Schatten norm .rr.

34.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
(
2009
).
35.
P.
Deuflhard
and
M.
Weber
,
Linear Algebra Appl.
398
,
161
(
2005
), special Issue on Matrices and Mathematical Biology.
36.
M.
Weber
and
T.
Galliat
, “
Characterization of transition states in conformational dynamics using fuzzy sets
,” Technical Report No. 02-12,
Konrad-Zuse-Zentrum für Informationstechnik Berlin
,
Berlin-Dahlem, Germany
,
2002
.
37.
S.
Stolzenberg
,
Bioinformatics
2018
,
bty818
.
38.
C. T.
MacDonald
,
J. H.
Gibbs
, and
A. C.
Pipkin
,
Biopolymers
6
,
1
(
1968
).
40.
O.
Golinelli
and
K.
Mallick
,
J. Phys. A: Math. Gen.
39
,
12679
(
2006
).
41.
A. B.
Kolomeisky
,
G. M.
Schütz
,
E. B.
Kolomeisky
, and
J. P.
Straley
,
J. Phys. A
31
,
6911
(
1998
).
42.
F.
Nüske
,
R.
Schneider
,
F.
Vitalini
, and
F.
Noé
,
J. Chem. Phys.
144
,
054105
(
2016
).
43.
C. R.
Schwantes
and
V. S.
Pande
,
J. Chem. Theory Comput.
11
,
600
(
2015
).
44.
M. K.
Scherer
,
B.
Trendelkamp-Schroer
,
F.
Paul
,
G.
Pérez-Hernández
,
M.
Hoffmann
,
N.
Plattner
,
C.
Wehmeyer
,
J.-H.
Prinz
, and
F.
Noé
,
J. Chem. Theory Comput.
11
,
5525
(
2015
).
45.
F.
Nüske
,
H.
Wu
,
J.-H.
Prinz
,
C.
Wehmeyer
,
C.
Clementi
, and
F.
Noé
,
J. Chem. Phys.
146
,
094104
(
2017
).
46.
G. R.
Bowman
,
K. A.
Beauchamp
,
G.
Boxer
, and
V. S.
Pande
,
J. Chem. Phys.
131
,
124101
(
2009
).
47.
Molecular Biology of the Cell
, edited by
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
D.
Morgen
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
(
Garland Science, Taylor & Francis Group
,
New York, USA
,
2008
), Chap. 11, pp.
611
640
.
48.
D. A.
Doyle
,
J. M.
Cabral
,
R. A.
Pfuetzner
,
A.
Kuo
,
J. M.
Gulbis
,
S. L.
Cohen
,
B. T.
Chait
, and
R.
MacKinnon
,
Science
280
,
69
(
1998
).
50.
T.
Hoshi
and
C. M.
Armstrong
,
J. Gen. Physiol.
141
,
151
(
2013
).
51.
C.
Kutzner
,
H.
Grubmüller
,
B. L.
de Groot
, and
U.
Zachariae
,
Biophys. J.
101
,
809
(
2011
).
52.
Y.
Zhou
,
J. H.
Morais-Cabral
,
A.
Kaufman
, and
R.
MacKinnon
,
Nature
414
,
43
(
2001
).
53.
M.
Weber
, “
Clustering by using a simplex structure
,” Technical Report No. 04-03,
Konrad-Zuse-Zentrum für Informationstechnik Berlin
,
Berlin-Dahlem, Germany
,
2004
.
54.
C.
Schütte
,
F.
Noe
,
J.
Lu
,
M.
Sarich
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
134
,
204105
(
2011
).
55.
A.
Jain
and
G.
Stock
,
J. Chem. Theory Comput.
8
,
3810
(
2012
).
56.
J. F.
Cordero-Morales
,
L. G.
Cuello
,
Y.
Zhao
,
V.
Jogini
,
D. M.
Cortes
,
B.
Roux
, and
E.
Perozo
,
Nat. Struct. Mol. Biol.
13
,
311
(
2006
).
57.
R.
Banisch
and
P.
Koltai
,
Chaos
27
,
035804
(
2017
).
58.
G.
Froyland
,
K.
Padberg
,
M. H.
England
, and
A. M.
Treguier
,
Phys. Rev. Lett.
98
,
224503
(
2007
).
59.
N.
Santitissadeekorn
,
G.
Froyland
, and
A.
Monahan
,
Phys. Rev. E
82
,
056311
(
2010
).

Supplementary Material

You do not currently have access to this content.