The general theory of the construction of scale-consistent energy terms in the coarse-grained force fields presented in Paper I of this series has been applied to the revision of the UNRES force field for physics-based simulations of proteins. The potentials of mean force corresponding to backbone-local and backbone-correlation energy terms were calculated from the ab initio energy surfaces of terminally blocked glycine, alanine, and proline, and the respective analytical expressions, derived by using the scale-consistent formalism, were fitted to them. The parameters of all these potentials depend on single-residue types, thus reducing their number and preventing over-fitting. The UNRES force field with the revised backbone-local and backbone-correlation terms was calibrated with a set of four small proteins with basic folds: tryptophan cage variant (TRP1; α), Full Sequence Design (FSD; α + β), villin headpiece (villin; α), and a truncated FBP-28 WW-domain variant (2MWD; β) (the NEWCT-4P force field) and, subsequently, with an enhanced set of 9 proteins composed of TRP1, FSD, villin, 1BDC (α), 2I18 (α), 1QHK (α + β), 2N9L (α + β), 1E0L (β), and 2LX7 (β) (the NEWCT-9P force field). The NEWCT-9P force field performed better than NEWCT-4P in a blind-prediction-like test with a set of 26 proteins not used in calibration and outperformed, in a test with 76 proteins, the most advanced OPT-WTFSA-2 version of UNRES with former backbone-local and backbone-correlation terms that contained more energy terms and more optimizable parameters. The NEWCT-9P force field reproduced the bimodal distribution of backbone-virtual-bond angles in the simulated structures, as observed in experimental protein structures.

1.
A. K.
Sieradzan
,
M.
Makowski
,
A.
Augustynowicz
, and
A.
Liwo
,
J. Chem. Phys.
146
,
124106
(
2017
).
2.
A.
Liwo
,
C.
Czaplewski
,
J.
Pillardy
, and
H. A.
Scheraga
,
J. Chem. Phys.
115
,
2323
(
2001
).
3.
G. S.
Ayton
,
W. G.
Noid
, and
G. A.
Voth
,
Curr. Opin. Struct. Biol.
17
,
192
(
2007
).
4.
R.
Kubo
,
J. Phys. Soc. Jpn.
17
,
1100
(
1962
).
5.
E. A.
Lubecka
and
A.
Liwo
,
J. Chem. Phys.
147
,
115101
(
2017
).
6.
A.
Liwo
,
C.
Czaplewski
,
S.
Ołdziej
,
A. V.
Rojas
,
R.
Kaźmierkiewicz
,
M.
Makowski
,
R. K.
Murarka
, and
H. A.
Scheraga
, in
Coarse-Graining of Condensed Phase and Biomolecular Systems
, edited by
G.
Voth
(
CRC Press
,
2008
), Chap. 8, pp.
1391
1411
.
7.
A.
Liwo
,
M.
Baranowski
,
C.
Czaplewski
,
E.
Gołaś
,
Y.
He
,
D.
Jagieła
,
P.
Krupa
,
M.
Maciejczyk
,
M.
Makowski
,
M. A.
Mozolewska
 et al.,
J. Mol. Model.
20
,
2306
(
2014
).
8.
B.
Zaborowski
,
D.
Jagieła
,
C.
Czaplewski
,
A.
Hałabis
,
A.
Lewandowska
,
W.
Żmudzińska
,
S.
Ołdziej
,
A.
Karczyńska
,
C.
Omieczynski
,
T.
Wirecki
 et al.,
J. Chem. Inf. Model.
55
,
2050
(
2015
).
9.
P.
Krupa
,
A.
Hałabis
,
W.
Żmudzińska
,
S.
Ołdziej
,
H. A.
Scheraga
, and
A.
Liwo
,
J. Chem. Inf. Model.
57
,
2364
(
2017
).
10.
Y.
He
,
A.
Liwo
, and
H. A.
Scheraga
,
J. Chem. Phys.
143
,
243111
(
2015
).
11.
Y.
He
,
M.
Maciejczyk
,
S.
Ołdziej
,
H. A.
Scheraga
, and
A.
Liwo
,
Phys. Rev. Lett.
110
,
098101
(
2013
).
12.
A.
Liwo
,
S.
Ołdziej
,
M. R.
Pincus
,
R. J.
Wawak
,
S.
Rackovsky
, and
H. A.
Scheraga
,
J. Comput. Chem.
18
,
849
(
1997
).
13.
A.
Liwo
,
M. R.
Pincus
,
R. J.
Wawak
,
S.
Rackovsky
,
S.
Ołdziej
, and
H. A.
Scheraga
,
J. Comput. Chem.
18
,
874
(
1997
).
14.
S.
Ołdziej
,
A.
Liwo
,
C.
Czaplewski
,
J.
Pillardy
, and
H. A.
Scheraga
,
J. Phys. Chem. B
108
,
16934
(
2004
).
15.
A.
Liwo
,
M.
Khalili
,
C.
Czaplewski
,
S.
Kalinowski
,
S.
Ołdziej
,
K.
Wachucik
, and
H.
Scheraga
,
J. Phys. Chem. B
111
,
260
(
2007
).
16.
U.
Kozłowska
,
G. G.
Maisuradze
,
A.
Liwo
, and
H. A.
Scheraga
,
J. Comput. Chem.
31
,
1154
(
2010
).
17.
A.
Liwo
,
Y.
He
, and
H. A.
Scheraga
,
Phys. Chem. Chem. Phys.
13
,
16890
(
2011
).
18.
A. K.
Sieradzan
,
P.
Krupa
,
H. A.
Scheraga
,
A.
Liwo
, and
C.
Czaplewski
,
J. Chem. Theory Comput.
11
,
817
(
2015
).
19.
K.
Nishikawa
,
F. A.
Momany
, and
H. A.
Scheraga
,
Macromolecules
7
,
797
(
1974
).
20.
M.
Chinchio
,
C.
Czaplewski
,
A.
Liwo
,
S.
Ołdziej
, and
H. A.
Scheraga
,
J. Chem. Theory Comput.
3
,
1236
(
2007
).
21.
P.
Krupa
,
A. K.
Sieradzan
,
M. A.
Mozolewska
,
H.
Li
,
A.
Liwo
, and
H. A.
Scheraga
,
J. Chem. Theory Comput.
13
,
5721
(
2017
).
22.
P.
Krupa
,
M. A.
Mozolewska
,
M.
Wiśniewska
,
Y.
Yin
,
Y.
He
,
A. K.
Sieradzan
,
R.
Ganzynkowicz
,
A. G.
Lipska
,
A.
Karczyńska
,
M.
Ślusarz
 et al.,
Bioinformatics
32
,
3270
(
2016
).
23.
H.
Shen
,
A.
Liwo
, and
H. A.
Scheraga
,
J. Phys. Chem. B
113
,
8738
(
2009
).
24.
S.
Ołdziej
,
U.
Kozłowska
,
A.
Liwo
, and
H. A.
Scheraga
,
J. Phys. Chem. A
107
,
8035
(
2003
).
25.
A. K.
Sieradzan
,
U. H. E.
Hansmann
,
H. A.
Scheraga
, and
A.
Liwo
,
J. Chem. Theory Comput.
8
,
4746
(
2012
).
26.
A. K.
Sieradzan
,
A.
Niadzvedtski
,
H. A.
Scheraga
, and
A.
Liwo
,
J. Chem. Theory Comput.
10
,
2194
(
2014
).
27.
A.
Liwo
,
M. R.
Pincus
,
R. J.
Wawak
,
S.
Rackovsky
, and
H. A.
Scheraga
,
Protein Sci.
2
,
1715
(
1993
).
28.
A.
Liwo
,
S.
Ołdziej
,
C.
Czaplewski
,
U.
Kozłowska
, and
H. A.
Scheraga
,
J. Phys. Chem. B
108
,
9421
(
2004
).
29.
B.
Mennucci
,
J.
Tomasi
,
R.
Cammi
,
J.
Cheesman
,
M. J.
Frisch
,
F. J.
Devlin
,
S.
Gabriel
, and
P. J.
Stephens
,
J. Phys. Chem. A
106
,
6102
(
2002
).
30.
D. W.
Marquardt
,
J. Soc. Indust. Appl. Math.
11
,
431
(
1963
).
31.
S.
Kumar
,
D.
Bouzida
,
R. H.
Swendsen
,
P. A.
Kollman
, and
J. M.
Rosenberg
,
J. Comput. Chem.
13
,
1011
(
1992
).
32.
A.
Hałabis
,
W.
Żmudzińska
, and
S.
Ołdziej
,
Protein Sci.
24
(
SI
),
99
(
2015
).
33.
Y.
Zhang
and
J.
Skolnick
,
Proteins: Struct., Funct., Bioinf.
57
,
702
(
2004
).
34.
A.
Zemla
,
Nucleic Acids Res.
13
,
3370
(
2003
).
35.
J.
Moult
,
K.
Fidelis
,
A.
Kryshtafovych
,
T.
Schwede
, and
A.
Tramontano
,
Proteins: Struct., Funct., Bioinf.
82
(
Suppl. 2
),
1
(
2013
).
36.
D. M.
Gay
,
ACM Trans. Math. Software
9
,
503
(
1983
).
37.
J.
Lee
,
H. A.
Scheraga
, and
S.
Rackovsky
,
J. Comput. Chem.
18
,
1222
(
1997
).
38.
I. S.
Joung
,
J. Y.
Kim
,
S. P.
Gross
,
K.
Joo
, and
J.
Lee
,
Comput. Phys. Commun.
223
,
2833
(
2018
).
39.
M.
Khalili
,
A.
Liwo
,
F.
Rakowski
,
P.
Grochowski
, and
H. A.
Scheraga
,
J. Phys. Chem. B
109
,
13785
(
2005
).
40.
M.
Khalili
,
A.
Liwo
,
A.
Jagielska
, and
H. A.
Scheraga
,
J. Phys. Chem. B
109
,
13798
(
2005
).
41.
C.
Czaplewski
,
S.
Kalinowski
,
A.
Liwo
, and
H. A.
Scheraga
,
J. Chem. Theory Comput.
5
,
627
(
2009
).
42.
S.
Trebst
,
M.
Troyer
, and
U. H. E.
Hansmann
,
J. Chem. Phys.
124
,
174903
(
2006
).
43.
F.
Rakowski
,
P.
Grochowski
,
B.
Lesyng
,
A.
Liwo
, and
H. A.
Scheraga
,
J. Chem. Phys.
125
,
204107
(
2006
).
44.
M. P.
Eastwood
,
C.
Hardin
,
Z.
Luthey-Schulten
, and
P. G.
Wolynes
,
J. Chem. Phys.
117
,
4602
(
2002
).
45.
A. S.
Karczyńska
,
C.
Czaplewski
,
P.
Krupa
,
M. A.
Mozolewska
,
K.
Joo
,
J.
Lee
, and
A.
Liwo
,
J. Comput. Chem.
38
,
2730
(
2017
).
46.
F.
Murtagh
and
A.
Heck
,
Multivariate Data Analysis
(
Kluwer Academic Publishers
,
1987
).
47.
P.
Krupa
,
A. K.
Sieradzan
,
S.
Rackovsky
,
M.
Baranowski
,
S.
Ołdziej
,
H. A.
Scheraga
,
A.
Liwo
, and
C.
Czaplewski
,
J. Chem. Theory Comput.
9
,
4620
(
2013
).
48.
A.
Kolinski
and
J.
Skolnick
,
J. Chem. Phys.
97
,
9412
(
1992
).
49.
C. J.
McKnight
,
P. T.
Matsudaira
, and
P. S.
Kim
,
Nat. Struct. Biol.
4
,
180
(
1997
).
50.
B. I.
Dahiyat
and
S. L.
Mayo
,
Science
278
,
82
(
1997
).
51.
R.
Zhou
,
G. G.
Maisuradze
,
D.
Sunol
,
T.
Todorovski
,
M. J.
Macias
,
Y.
Xiao
,
H. A.
Scheraga
,
C.
Czaplewski
, and
A.
Liwo
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
18243
(
2014
).
52.
H.
Gouda
,
H.
Torigoe
,
A.
Saito
,
M.
Sato
,
Y.
Arata
, and
I.
Shimada
,
Biochemistry
31
,
9665
(
1992
).
53.
S. M.
Mustafi
,
S.
Mukherjee
,
K. V.
Chary
, and
G.
Cavallaro
,
Proteins: Struct., Funct., Bioinf.
65
,
656
(
2006
).
54.
T.
Ikeya
,
T.
Hanashima
,
S.
Hosoya
,
M.
Shimazaki
,
S.
Ikeda
,
M.
Mishima
,
P.
Guentert
, and
Y.
Ito
,
Sci. Rep.
6
,
38312
(
2016
).
55.
S. P.
Evans
and
M.
Bycroft
,
J. Mol. Biol.
291
,
661
(
1999
).
56.
M. J.
Macias
,
V.
Gervais
,
C.
Civera
, and
H.
Oschkinat
,
Nat. Struct. Biol.
7
,
375
(
2000
).
57.
B.
Barua
,
J. C.
Lin
,
V. D.
Williams
,
P.
Kummler
,
J. W.
Neidigh
, and
N. H.
Andersen
,
Protein Eng., Des. Sel.
21
,
171
(
2008
).
58.
H.
Nguyen
,
M.
Jäger
,
A.
Moretto
,
M.
Gruebele
, and
J. W.
Kelly
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
3948
(
2003
).
59.
A.Hałabis
,
W.
Żmudzińska
,
M.
Kozak
,
A.
Liwo
, and
S.
Ołdziej
, “
NMR study of the folding of different variants of tryptophan cage at variaous temperatures
” (unpublished).

Supplementary Material

You do not currently have access to this content.