The so-called D4 model is presented for the accurate computation of London dispersion interactions in density functional theory approximations (DFT-D4) and generally for atomistic modeling methods. In this successor to the DFT-D3 model, the atomic coordination-dependent dipole polarizabilities are scaled based on atomic partial charges which can be taken from various sources. For this purpose, a new charge-dependent parameter-economic scaling function is designed. Classical charges are obtained from an atomic electronegativity equilibration procedure for which efficient analytical derivatives with respect to nuclear positions are developed. A numerical Casimir-Polder integration of the atom-in-molecule dynamic polarizabilities then yields charge- and geometry-dependent dipole-dipole dispersion coefficients. Similar to the D3 model, the dynamic polarizabilities are precomputed by time-dependent DFT and all elements up to radon (Z = 86) are covered. The two-body dispersion energy expression has the usual sum-over-atom-pairs form and includes dipole-dipole as well as dipole-quadrupole interactions. For a benchmark set of 1225 molecular dipole-dipole dispersion coefficients, the D4 model achieves an unprecedented accuracy with a mean relative deviation of 3.8% compared to 4.7% for D3. In addition to the two-body part, three-body effects are described by an Axilrod-Teller-Muto term. A common many-body dispersion expansion was extensively tested, and an energy correction based on D4 polarizabilities is found to be advantageous for larger systems. Becke-Johnson-type damping parameters for DFT-D4 are determined for more than 60 common density functionals. For various standard energy benchmark sets, DFT-D4 slightly but consistently outperforms DFT-D3. Especially for metal containing systems, the introduced charge dependence of the dispersion coefficients improves thermochemical properties. We suggest (DFT-)D4 as a physically improved and more sophisticated dispersion model in place of DFT-D3 for DFT calculations as well as other low-cost approaches like semi-empirical models.

1.
R. G.
Parr
and
Y.
Weitao
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
1989
).
2.
A. D.
Becke
, “
Perspective: Fifty years of density-functional theory in chemical physics
,”
J. Chem. Phys.
140
,
18A301
(
2014
).
3.
R.
Sure
,
J.
Antony
, and
S.
Grimme
, “
Blind prediction of binding affinities for charged supramolecular host-guest systems: Achievements and shortcomings of DFT-D3
,”
J. Phys. Chem. B
118
,
3431
3440
(
2014
).
4.
J.
Yin
,
N. M.
Henriksen
,
D. R.
Slochower
,
M. R.
Shirts
,
M. W.
Chiu
,
D. L.
Mobley
, and
M. K.
Gilson
, “
Overview of the SAMPL5 host–guest challenge: Are we doing better?
,”
J. Comput. Aided Mol. Des.
31
,
1
19
(
2017
).
5.
K. I.
Assaf
,
M.
Florea
,
J.
Antony
,
N. M.
Henriksen
,
J.
Yin
,
A.
Hansen
,
Z. W.
Qu
,
R.
Sure
,
D.
Klapstein
,
M. K.
Gilson
,
S.
Grimme
, and
W. M.
Nau
, “
Hydrophobe challenge: A joint experimental and computational study on the host–guest binding of hydrocarbons to cucurbiturils, allowing explicit evaluation of guest hydration free-energy contributions
,”
J. Phys. Chem. B
121
,
11144
11162
(
2017
).
6.
M.
Pérez
,
Z. W.
Qu
,
C. B.
Caputo
,
V.
Podgorny
,
L. J.
Hounjet
,
A.
Hansen
,
R.
Dobrovetsky
,
S.
Grimme
, and
D. W.
Stephan
, “
Hydrosilylation of ketones, imines and nitriles catalysed by electrophilic phosphonium cations: Functional group selectivity and mechanistic considerations
,”
Chem. Eur. J.
21
,
6491
6500
(
2015
).
7.
T.
Sperger
,
I. A.
Sanhueza
,
I.
Kalvet
, and
F.
Schoenebeck
, “
Computational studies of synthetically relevant homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: An overview of commonly employed DFT methods and mechanistic insights
,”
Chem. Rev.
115
,
9532
9586
(
2015
).
8.
D. A.
Bardwell
,
C. S.
Adjiman
,
Y. A.
Arnautova
,
E.
Bartashevich
,
S. X. M.
Boerrigter
,
D. E.
Braun
,
A. J.
Cruz-Cabeza
,
G. M.
Day
,
R. G.
Della Valle
,
G. R.
Desiraju
,
B. P.
van Eijck
,
J. C.
Facelli
,
M. B.
Ferraro
,
D.
Grillo
,
M.
Habgood
,
D. W. M.
Hofmann
,
F.
Hofmann
,
K. V. J.
Jose
,
P. G.
Karamertzanis
,
A. V.
Kazantsev
,
J.
Kendrick
,
L. N.
Kuleshova
,
F. J. J.
Leusen
,
A. V.
Maleev
,
A. J.
Misquitta
,
S.
Mohamed
,
R. J.
Needs
,
M. A.
Neumann
,
D.
Nikylov
,
A. M.
Orendt
,
R.
Pal
,
C. C.
Pantelides
,
C. J.
Pickard
,
L. S.
Price
,
S. L.
Price
,
H. A.
Scheraga
,
J.
van de Streek
,
T. S.
Thakur
,
S.
Tiwari
,
E.
Venuti
, and
I. K.
Zhitkov
, “
Towards crystal structure prediction of complex organic compounds—A report on the fifth blind test
,”
Acta Cryst. B
67
,
535
551
(
2011
).
9.
A. M.
Reilly
 et al., “
Report on the sixth blind test of organic crystal structure prediction methods
,”
Acta Cryst. B
72
,
439
459
(
2016
).
10.
S. L.
Price
and
S. M.
Reutzel-Edens
, “
The potential of computed crystal energy landscapes to aid solid-form development
,”
Drug Discov. Today
21
,
912
923
(
2016
).
11.
S.
Kristyán
and
P.
Pulay
, “
Can (semi)local density functional theory account for the London dispersion forces?
,”
Chem. Phys. Lett.
229
,
175
180
(
1994
).
12.
J. M.
Pérez-Jordá
and
A. D.
Becke
, “
A density-functional study of van der Waals forces: Rare gas diatomics
,”
Chem. Phys. Lett.
233
,
134
137
(
1995
).
13.
M. D.
Wodrich
,
C.
Corminboeuf
, and
P. R.
Schleyer
, “
Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals
,”
Org. Lett.
8
,
3631
3634
(
2006
).
14.
E. R.
Johnson
and
G. A.
DiLabio
, “
Structure and binding energies in van der Waals dimers: Comparison between density functional theory and correlated ab initio methods
,”
Chem. Phys. Lett.
419
,
333
339
(
2006
).
15.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
, “
Dispersion-corrected mean-field electronic structure methods
,”
Chem. Rev.
116
,
5105
5154
(
2016
).
16.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
17.
A. D.
Becke
and
E. R.
Johnson
, “
Exchange-hole dipole moment and the dispersion interaction
,”
J. Chem. Phys.
122
,
154104
(
2005
).
18.
A. D.
Becke
and
E. R.
Johnson
, “
A density-functional model of the dispersion interaction
,”
J. Chem. Phys.
123
,
154101
(
2005
).
19.
A.
Otero-de-la Roza
and
E. R.
Johnson
, “
Many-body dispersion interactions from the exchange-hole dipole moment model
,”
J. Chem. Phys.
138
,
054103
(
2013
).
20.
A.
Tkatchenko
and
M.
Scheffler
, “
Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data
,”
Phys. Rev. Lett.
102
,
073005
(
2009
).
21.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
,
B. I.
Lundqvist
, and
Van der Waals
, “
Density functional for general geometries
,”
Phys. Rev. Lett.
92
,
246401
(
2004
).
22.
K.
Berland
,
V. R.
Cooper
,
K.
Lee
,
E.
Schröder
,
T.
Thonhauser
,
P.
Hyldgaard
, and
B. I.
Lundqvist
, “
van der Waals forces in density functional theory: A review of the vdW-DF method
,”
Rep. Prog. Phys.
78
,
066501
(
2015
).
23.
O. A.
Vydrov
and
T.
Van Voorhis
, “
Improving the accuracy of the nonlocal van der Waals density functional with minimal empiricism
,”
J. Chem. Phys.
130
,
104105
(
2009
).
24.
O.
A Vydrov
and
T.
Van Voorhis
, “
Nonlocal van der Waals density functional made simple
,”
Phys. Rev. Lett.
103
,
063004
(
2009
).
25.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
, “
A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions
,”
Phys. Chem. Chem. Phys.
19
,
32184
32215
(
2017
).
26.
E.
Caldeweyher
,
C.
Bannwarth
, and
S.
Grimme
, “
Extension of the D3 dispersion coefficient model
,”
J. Chem. Phys.
147
,
034112
(
2017
).
27.
S. A.
Ghasemi
,
A.
Hofstetter
,
S.
Saha
, and
S.
Goedecker
, “
Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
,”
Phys. Rev. B
92
,
045131
(
2015
).
28.
R. A.
DiStasio
,
O. A.
von Lilienfeld
, and
A.
Tkatchenko
, “
Collective many-body van der Waals interactions in molecular systems
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
14791
14795
(
2012
).
29.
A.
Ambrosetti
,
D.
Alfè
,
R. A.
DiStasio
, Jr.
, and
A.
Tkatchenko
, “
Hard numbers for large molecules: Toward exact energetics for supramolecular systems
,”
J. Phys. Chem. Lett.
5
,
849
855
(
2014
).
30.
S. M.
Gatica
,
M. W.
Cole
, and
D.
Velegol
, “
Designing van der Waals forces between nanocolloids
,”
Nano Lett.
5
,
169
173
(
2005
).
31.
H. Y.
Kim
,
J. O.
Sofo
,
D.
Velegol
,
M. W.
Cole
, and
A. A.
Lucas
, “
Van der Waals dispersion forces between dielectric nanoclusters
,”
Langmuir
23
,
1735
1740
(
2007
).
32.
V. V.
Gobre
and
A.
Tkatchenko
, “
Scaling laws for van der Waals interactions in nanostructured materials
,”
Nat. Commun.
4
,
2341
(
2013
).
33.
T.
Bučko
,
S.
Lebègue
,
T.
Gould
, and
J. G.
Ángyán
, “
Many-body dispersion corrections for periodic systems: An efficient reciprocal space implementation
,”
J. Phys.: Condens. Matter
28
,
045201
(
2016
).
34.
M. J.
Elrod
and
R. J.
Saykally
, “
Many-body effects in intermolecular forces
,”
Chem. Rev.
94
,
1975
1997
(
1994
).
35.
A. G.
Donchev
, “
Many-body effects of dispersion interaction
,”
J. Chem. Phys.
125
,
074713
(
2006
).
36.
J.
Hermann
,
R. A.
DiStasio
, Jr.
, and
A.
Tkatchenko
, “
First-principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications
,”
Chem. Rev.
117
,
4714
4758
(
2017
).
37.
J. F.
Dobson
, “
Beyond pairwise additivity in London dispersion interactions
,”
Int. J. Quantum Chem.
114
,
1157
1161
(
2014
).
38.
A.
Tkatchenko
,
R. A.
DiStasio
, Jr.
,
R.
Car
, and
M.
Scheffler
, “
Accurate and efficient method for many-body van der Waals interactions
,”
Phys. Rev. Lett.
108
,
236402
(
2012
).
39.
R. A.
DiStasio
,
V. V.
Gobre
, and
A.
Tkatchenko
, “
Many-body van der Waals interactions in molecules and condense matter
,”
J. Phys.: Condens. Matter
26
,
213202
(
2014
).
40.
B. M.
Axilrod
and
E.
Teller
, “
Interaction of the van der Waals type between three atoms
,”
J. Chem. Phys.
11
,
299
300
(
1943
).
41.
Y.
Muto
, “
Force between nonpolar molecules
,”
Proc. Phys. Math. Soc. Jpn.
17
,
629
631
(
1943
).
42.
D. C.
Ghosh
and
N.
Islam
, “
Semiempirical evaluation of the global hardness of the atoms of 103 elements of the periodic table using the most probable radii as their size descriptors
,”
Int. J. Quantum Chem.
110
,
1206
1213
(
2010
).
43.
See http://www.turbomole.com for TURBOMOLE V7.0 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007.
44.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
, “
Turbomole
,”
WIREs Comput. Mol. Sci.
4
,
91
100
(
2014
).
45.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
, “
Electronic structure calculations on workstation computers: The program system turbomole
,”
Chem. Phys. Lett.
162
,
165
169
(
1989
).
46.
K. J.
Miller
, “
Additivity methods in molecular polarizability
,”
J. Am. Chem. Soc.
112
,
8533
8542
(
1990
).
47.
L.
Pauling
,
The Nature of the Chemical Bond
, 3rd ed. (
Cornell University Press
,
Ithaca, New York
,
1960
), p.
17
.
48.
P.
Pyykkö
and
M.
Atsumi
, “
Molecular single-bond covalent radii for elements 1–118
,”
Chem. – Eur. J.
15
,
186
197
(
2009
).
49.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
, “
GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions
,”
J. Chem. Theory Comput.
15
,
1652
1671
(
2019
).
50.
K. B.
Wiberg
, “
Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane
,”
Tetrahedron
24
,
1083
1096
(
1968
).
51.
W.
Reckien
,
F.
Janetzko
,
M. F.
Peintinger
, and
T.
Bredow
, “
Implementation of empirical dispersion corrections to density functional theory for periodic systems
,”
J. Comput. Chem.
33
,
2023
2031
(
2012
).
52.
T. M.
Trnka
and
R. H.
Grubbs
, “
The development of L2X2Ru=CHR Olefin metathesis catalysts: An organometallic success story
,”
Acc. Chem. Res.
34
,
18
29
(
2001
).
53.
J. J.
Van Veldhuizen
,
D. G.
Gillingham
,
S. B.
Garber
,
O.
Kataoka
, and
A. H.
Hoveyda
, “
Chiral Ru-based complexes for asymmetric olefin metathesis: Enhancement of catalyst activity through steric and electronic modifications
,”
J. Am. Chem. Soc.
125
,
12502
12508
(
2003
).
54.
N.
Artrith
,
T.
Morawietz
, and
J.
Behler
, “
High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide
,”
Phys. Rev. B
83
,
153101
(
2011
).
55.
J. R.
Bunch
and
L.
Kaufman
, “
A computational method for the indefinite quadratic programming problem
,”
Linear Algebra Appl.
34
,
341
370
(
1980
).
56.
J.-D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected double-hybrid density functionals with damped atom-atom dispersion corrections
,”
Phys. Chem. Chem. Phys.
10
,
6615
6620
(
2000
).
57.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
58.
J.
Cao
and
B. J.
Berne
, “
Many-body dispersion forces of polarizable clusters and liquids
,”
J. Chem. Phys.
97
,
8628
8636
(
1992
).
59.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
60.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
61.
H.
Schröder
,
A.
Creon
, and
T.
Schwabe
, “
Reformulation of the D3 (Becke–Johnson) dispersion correction without resorting to higher than C6 dispersion coefficients
,”
J. Chem. Theory Comput.
11
,
3163
3170
(
2015
).
62.
H.
Schröder
,
J.
Hühnert
, and
T.
Schwabe
, “
Evaluation of DFT-D3 dispersion corrections for various structural benchmark sets
,”
J. Chem. Phys.
146
,
044115
(
2017
).
63.
J.
Witte
,
N.
Mardirossian
,
J. B.
Neaton
, and
M.
Head-Gordon
, “
Assessing DFT-D3 damping functions across widely used density functionals: Can we do better?
,”
J. Chem. Theory Comput.
13
,
2043
2052
(
2017
).
64.
D. G. A.
Smith
,
L. A.
Burns
,
K.
Patkowski
, and
C. D.
Sherrill
, “
Revised damping parameters for the D3 dispersion correction to density functional theory
,”
J. Phys. Chem. Lett.
7
,
2197
2203
(
2016
).
65.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
66.
J. G.
Brandenburg
,
J. E.
Bates
,
J.
Sun
, and
J. P.
Perdew
, “
Benchmark tests of a strongly constrained semilocal functional with a long-range dispersion correction
,”
Phys. Rev. B
94
,
115144
(
2016
).
67.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
68.
F.
Neese
, “
Software update: The ORCA program system, version 4.0
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1327
(
2018
).
69.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
, “
Integral approximations for LCAO-SCF calculations
,”
Chem. Phys. Lett.
213
(
5-6
),
514
518
(
1993
).
70.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
, “
Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials
,”
Theor. Chem. Acc.
97
(
1
),
119
124
(
1997
).
71.
F.
Weigend
, “
Accurate Coulomb-fitting basis sets for H to Rn
,”
Phys. Chem. Chem. Phys.
8
(
9
),
1057
1065
(
2006
).
72.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
, “
Gaussian basis sets of quadruple zeta quality for atoms H to Kr
,”
J. Chem. Phys.
119
,
12753
12762
(
2003
).
73.
B.
Brauer
,
M. K.
Kesharwani
,
S.
Kozuch
, and
J. M. L.
Martin
, “
The S66x8 benchmark for noncovalent interactions revisited: Explicitly correlated ab initio methods and density functional theory
,”
J. Chem. Theory Comput.
18
,
20905
20925
(
2016
).
74.
L.
Gráfová
,
M.
Pitonak
,
J.
Řezáč
, and
P.
Hobza
, “
Comparative study of selected wave function and density functional methods for noncovalent interaction energy calculations using the extended S22 data set
,”
J. Chem. Theory Comput.
6
,
2365
2376
(
2010
).
75.
D. E.
Taylor
,
J. G.
Ángyán
,
G.
Galli
,
C.
Zhang
,
F.
Gygi
,
K.
Hirao
,
J. W.
Song
,
K.
Rahul
,
O.
Anatole von Lilienfeld
,
R.
Podeszwa
 et al., “
Blind test of density-functional-based methods on intermolecular interaction energies
,”
J. Chem. Phys.
145
,
124105
(
2016
).
76.
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
, “
A density functional theory study of frequency-dependent polarizabilities and van der Waals dispersion coefficients for polyatomic molecules
,”
J. Chem. Phys.
103
,
9347
9354
(
1995
).
77.
V. P.
Osinga
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
, “
Density functional results for isotropic and anisotropic multipole polarizabilities and C6, C7 and C8 van der Waals dispersion coefficients for molecules
,”
J. Chem. Phys.
106
,
5091
5101
(
1997
).
78.
A.
Otero de la Roza
,
F.
Kannemann
,
E. R.
Johnson
,
R. M.
Dickson
,
H.
Schmider
, and
A. D.
Becke
, Exchange-Hole Dipole Moment Model Standalone, http://schooner.chem.dal.ca/wiki/Postg,
2013
; accessed 15 February 2018].
79.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
);
[PubMed]
Erratum,
Phys. Rev. Lett.
78,
1396
(
1997
).
80.
A.
Tkatchenko
, Many-Body Dispersion (MBD) Standalone, http://www.fhi-berlin.mpg.de/∼tkatchen/MBD/,
2014
; accessed 15 February 2018.
81.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Climbing the density functional ladder: Nonempirical meta generalized gradient approximation designed for molecules and solids
,”
Phys. Rev. Lett.
91
,
146401
(
2003
).
82.
J. G.
Brandenburg
,
C.
Bannwarth
,
A.
Hansen
, and
S.
Grimme
, “
B97-3c: A revised low-cost variant of the B97-D density functional method
,”
J. Chem. Phys.
148
,
064104
(
2018
).
83.
R.
Sedlak
,
T.
Janowski
,
M.
Pitoňák
,
J.
Řezáč
,
P.
Pulay
, and
P.
Hobza
, “
Accuracy of quantum chemical methods for large noncovalent complexes
,”
J. Chem. Theory Comput.
9
,
3364
3374
(
2013
).
84.
R.
Sure
and
S.
Grimme
, “
Comprehensive benchmark of association (free) energies of realistic host-guest complexes
,”
J. Chem. Theory Comput.
11
,
3785
3801
(
2015
).
85.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).
86.
C.
Riplinger
,
B.
Sandhoefer
,
A.
Hansen
, and
F.
Neese
, “
Natural triple excitations in local coupled cluster calculations with pair natural orbitals
,”
J. Chem. Phys.
139
,
134101
(
2013
).
87.
C.
Riplinger
and
F.
Neese
, “
An efficient and near linear scaling pair natural orbital based local coupled cluster method
,”
J. Chem. Phys.
138
,
034106
(
2013
).
88.
C.
Riplinger
,
P.
Pinski
,
U.
Becker
,
E. F.
Valeev
, and
F.
Neese
, “
Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory
,”
J. Chem. Phys.
144
,
024109
(
2016
).
89.
H.
Kruse
,
A.
Mladek
,
K.
Gkionis
,
A.
Hansen
,
S.
Grimme
, and
J.
Sponer
, “
Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit
,”
J. Chem. Theory Comput.
11
,
4972
4991
(
2015
).
90.
G. I.
Csonka
,
A. D.
French
,
G. P.
Johnson
, and
C. A.
Stortz
, “
Evaluation of density functionals and basis sets for carbohydrates
,”
J. Chem. Theory Comput.
5
,
679
692
(
2009
).
91.
D.
Řeha
,
H.
Valdès
,
J.
Vondrášek
,
P.
Hobza
,
A.
Abu-Riziq
,
B.
Crews
, and
M. S.
de Vries
, “
Structure and IR spectrum of phenylalanyl-glycyl-glycine tripetide in the gas-phase: IR/UV experiments, ab initio quantum chemical calculations, and molecular dynamic simulations
,”
Chem. Eur. J.
11
,
6803
6817
(
2005
).
92.
L.
Goerigk
,
A.
Karton
,
J. M. L.
Martin
, and
L.
Radom
, “
Accurate quantum chemical energies for tetrapeptide conformations: Why MP2 data with an insufficient basis set should be handled with caution
,”
Phys. Chem. Chem. Phys.
15
,
7028
7031
(
2013
).
93.
L.
Goerigk
,
A.
Hansen
,
C. A.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
, GMTKN55 Database, https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/GMTKN/gmtkn,
2017
; accessed 28 June 2018.
94.
S.
Dohm
,
A.
Hansen
,
M.
Steinmetz
,
S.
Grimme
, and
M. P.
Checinski
, “
Comprehensive thermochemical benchmark set of realistic closed-shell metal organic reactions
,”
J. Chem. Theory Comput.
14
,
2596
2608
(
2018
).
95.
S.
Dohm
,
A.
Hansen
,
M.
Steinmetz
,
S.
Grimme
, and
M. P.
Checinski
, MOR41 benchmark set, https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/mor41,
2018
; accessed 28 June 2018.
96.
F.
Pavošević
,
C.
Peng
,
P.
Pinski
,
C.
Riplinger
,
F.
Neese
, and
E. F.
Valeev
, “
Sparsemaps-a systematic infrastructure for reduced scaling electronic structure methods. V. Linear scaling explicitly correlated coupled-cluster method with pair natural orbitals
,”
J. Chem. Phys.
146
,
174108
(
2017
).
97.
F.
Neese
and
E. F.
Valeev
, “
Revisiting the atomic natural orbital approach for basis sets: Robust systematic basis sets for explicitly correlated and conventional correlated ab initio methods?
,”
J. Chem. Theory Comput.
7
,
33
43
(
2010
).
98.
S.
Grimme
,
J. G.
Brandenburg
,
C.
Bannwarth
, and
A.
Hansen
, “
Consistent structures and interactions by density functional theory with small atomic orbital basis sets
,”
J. Chem. Phys.
143
,
054107
(
2015
).
99.
G. D.
Zeiss
and
W. J.
Meath
, “
Dispersion energy constants C 6(A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O
,”
Mol. Phys.
33
,
1155
1176
(
1977
).
100.
D. J.
Margoliash
and
W. J.
Meath
, “
Pseudospectral dipole oscillator strength distributions and some related two body interaction coefficients for H, He, Li, N, O, H2, N2, O2, NO, N2O, H2O, NH3, and CH4
,”
J. Chem. Phys.
68
,
1426
1431
(
1978
).
101.
S.
Grimme
, “
Density functional theory with London dispersion corrections
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
211
228
(
2011
).
102.
T.
Sato
and
H.
Nakai
, “
Local response dispersion method. II. Generalized multicenter interactions
,”
J. Chem. Phys.
133
,
194101
(
2010
).
103.
O. A.
Vydrov
and
T.
Van Voorhis
, “
Dispersion interactions from a local polarizability model
,”
Phys. Rev. A
81
,
062708
(
2010
).
104.
S.
Grimme
and
J. P.
Djukic
, “
Cation-cation ‘attraction’: When London dispersion attraction wins over coulomb repulsion
,”
Inorg. Chem.
50
,
2619
2628
(
2011
).
105.
P.
Jurečka
,
J.
Šponer
,
J.
Cerny
, and
P.
Hobza
, “
Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs
,”
Phys. Chem. Chem. Phys.
8
,
1985
1993
(
2006
).
106.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
107.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phy. Rev. B
37
,
785
(
1988
).
108.
J. P.
Perdew
, “
Density-functional approximation for the correlation energy of the inhomogeneous electron gas
,”
Phys. Rev. B
33
,
8822
(
1986
).
109.
Y.
Zhao
and
D. G.
Truhlar
, “
A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
,”
J. Chem. Phys.
125
,
194101
(
2006
).
110.
Y.
Zhao
and
D. G.
Truhlar
, “
Density functionals with broad applicability in chemistry
,”
Acc. Chem. Res.
41
,
157
167
(
2008
).
111.
N. C.
Handy
and
D. J.
Tozer
, “
The development of new exchange-correlation functionals: 3
,”
Mol. Phys.
94
,
707
715
(
1998
).
112.
N. C.
Handy
and
A. J.
Cohen
, “
Left-right correlation energy
,”
Mol. Phys.
99
,
403
412
(
2001
).
113.
Y.
Zhang
and
W.
Yang
, “
Comment on ‘generalized gradient approximation made simple
,’”
Phys. Rev. Lett.
80
,
890
(
1998
).
114.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
, “
Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
,”
Phys. Rev. B
59
,
7413
(
1999
).
115.
Y.
Zhao
and
D. G.
Truhlar
, “
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
241
(
2008
).
116.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
117.
P. J.
Stephens
,
F. J.
Devlin
,
C. F. N.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
(
45
),
11623
11627
(
1994
).
118.
Y.
Zhao
and
D. G.
Truhlar
, “
Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions
,”
J. Phys. Chem. A
109
,
5656
5667
(
2005
).
119.
S.
Kozuch
,
D.
Gruzman
, and
J. M. L.
Martin
, “
DSD-BLYP: A general purpose double hybrid density functional including spin component scaling and dispersion correction
,”
J. Phys. Chem. C
114
,
20801
20808
(
2010
).
120.
A.
Karton
,
A.
Tarnopolsky
,
J. F.
Lamére
,
G. C.
Schatz
, and
J. M. L.
Martin
, “
Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics
,”
J. Phys. Chem. A
112
,
12868
12886
(
2008
).
121.
M. M.
Olmstead
and
A. L.
Balch
, “
Rhodium (ii) dimers: The preparation and structureof [(P–CH3C6H4NC)8Rh2I2]-[PF6]2
,”
J. Organomet. Chem.
148
,
C15
C18
(
1978
).
122.
H.
Endres
,
N.
Gottstein
,
H. J.
Keller
,
R.
Martin
,
W.
Rodemer
, and
W.
Steiger
, “
Kristall-und molekülstruktur von tetrakis (4-fluorophenylisonitril) rhodium (i) chloridhydrat und tetrakis (4-nitrophenylisonitril) rhodium (i) chlorid/crystal and molecular structure of tetrakis (4-fiuorophenylisonitrile) rhodium (i) chloride hydrate and tetrakis (4-nitrophenylisonitrile) rhodium (i) chloride
,”
Z. Naturforsch. B
34
,
827
833
(
1979
).
123.
N. T.
Tran
,
J. R.
Stork
,
D.
Pham
,
M. M.
Olmstead
,
J. C.
Fettinger
, and
A. L.
Balch
, “
Variation in crystallization conditions allows the isolation of trimeric as well as dimeric and monomeric forms of [(alkyl isocyanide)4RhI]+
,”
Chem. Commun.
2006
,
1130
1132
.
124.
S.
Kozuch
and
J. M. L.
Martin
, “
Spin-component-scaled double hybrids: An extensive search for the best fifth-rung functionals blending DFT and perturbation theory
,”
J. Comput. Chem.
34
,
2327
2344
(
2013
).
125.
M.
Bursch
,
E.
Caldeweyher
,
A.
Hansen
,
H.
Neugebauer
,
S.
Ehlert
, and
S.
Grimme
, “
Understanding and quantifying London dispersion effects in organometallic complexes
,”
Acc. Chem. Res.
52
,
258
266
(
2019
).
126.
A.
Najibi
and
L.
Goerigk
, “
The nonlocal kernel in van der Waals density functionals as an additive correction: An extensive analysis with special emphasis on the B97M-V and ωB97M-V approaches
,”
J. Chem. Theory Comput.
14
,
5725
5738
(
2018
).
127.
M.
Bühl
and
H.
Kabrede
, “
Geometries of transition-metal complexes from density-functional theory
,”
J. Chem. Theory Comput.
2
,
1282
1290
(
2006
).
128.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
, “
S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures
,”
J. Chem. Theory Comput.
7
,
2427
(
2011
).
129.
S.
Grimme
and
M.
Steinmetz
, “
Effects of London dispersion correction in density functional theory on the structures of organic molecules in the gas phase
,”
Phys. Chem. Chem. Phys.
15
,
16031
16042
(
2013
).
130.
T.
Risthaus
,
M.
Steinmetz
, and
S.
Grimme
, “
Implementation of nuclear gradients of range-separated hybrid density functionals and benchmarking on rotational constants for organic molecules
,”
J. Comput. Chem.
35
,
1509
1516
(
2014
).
131.
S.
Grimme
,
C.
Bannwarth
,
E.
Caldeweyher
,
J.
Pisarek
, and
A.
Hansen
, “
A general intermolecular force field based on tight-binding quantum chemical calculations
,”
J. Chem. Phys.
147
,
161708
(
2017
).
132.
E.
Caldeweyher
,
S.
Ehlert
, and
S.
Grimme
, DFT–D4 Standalone, https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dftd4,
2019
; accessed 21 March 2019.
133.
H. J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schutz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).

Supplementary Material

You do not currently have access to this content.