We perform a detailed statistical analysis of diffusive trajectories of membrane-enclosed vesicles (vacuoles) in the supercrowded cytoplasm of living Acanthamoeba castellanii cells. From the vacuole traces recorded in the center-of-area frame of moving amoebae, we examine the statistics of the time-averaged mean-squared displacements of vacuoles, their generalized diffusion coefficients and anomalous scaling exponents, the ergodicity breaking parameter, the non-Gaussian features of displacement distributions of vacuoles, the displacement autocorrelation function, as well as the distributions of speeds and positions of vacuoles inside the amoeba cells. Our findings deliver novel insights into the internal dynamics of cellular structures in these infectious pathogens.

1.
F.
Marciano-Cabral
and
G.
Cabral
, “
Acanthamoeba spp. as agents of disease in humans
,”
Clin. Microbiol. Rev.
16
,
273
(
2003
).
2.
N.
Khan
,
Acanthamoeba: Biology and Pathogenesis
(
Calster Academic Press
,
2009
).
3.
N. A.
Khan
, “
Acanthamoeba: Biology and increasing importance in human health
,”
FEMS Microbiol. Rev.
30
,
564
(
2006
).
4.
V.
Thomas
,
G.
McDonnell
,
S. P.
Denyer
, and
J.-Y.
Maillard
, “
Free-living amoebae and their intracellular pathogenic microorganisms: Risks for water quality
,”
FEMS Microbiol. Rev.
34
,
231
(
2010
).
5.
B.
Bowers
and
E. D.
Korn
, “
The fine structure of Acanthamoeba castellanii I
,”
J. Cell Biol.
39
,
95
(
1968
).
6.
O.
Baumann
and
D. B.
Murphy
, “
Microtubule-associated movement of mitochondria and small particles in Acanthamoeba castellanii
,”
Cell Motil. Cytoskel.
32
,
305
(
1995
).
7.
B.
Bowers
and
E. D.
Korn
, “
The fine structure of Acanthamoeba castellanii II
,”
J. Cell Biol.
41
,
786
(
1969
).
8.
J. F.
Reverey
,
J.-H.
Jeon
,
H.
Bao
,
M.
Leippe
,
R.
Metzler
, and
C.
Selhuber-Unkel
, “
Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii
,”
Sci. Rep.
5
,
11690
(
2015
).
9.
S. K.
Doberstein
,
I. C.
Baines
,
G.
Wiegand
,
E. D.
Korn
, and
T. D.
Pollard
, “
Inhibition of contractile vacuole function in vivo by antibodies against myosin-I
,”
Nature
365
,
841
(
1993
).
10.
D. J.
Patterson
, “
Contractile vacuoles and associated structures: Their organization and function
,”
Biol. Rev.
55
,
1
(
1980
).
11.
H.-F.
Hsu
,
E.
Bodenschatz
,
C.
Westendorf
,
A.
Gholami
,
A.
Pumir
,
M.
Tarantola
, and
C.
Beta
, “
Variability and order in cytoskeletal dynamics of motile amoeboid cells
,”
Phys. Rev. Lett.
119
,
148101
(
2017
).
12.
A. G.
Cherstvy
,
O.
Nagel
,
C.
Beta
, and
R.
Metzler
, “
Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells
,”
Phys. Chem. Chem. Phys.
20
,
23034
(
2018
).
13.
K.
Keren
,
P. T.
Yam
,
A.
Kinkhabwala
,
A.
Mogilner
, and
J. A.
Theriot
, “
Intracellular fluid flow in rapidly moving cells
,”
Nat. Cell Biol.
11
,
1219
(
2009
).
14.
J. A.
Theriot
and
T. J.
Mitchison
, “
Actin microfilament dynamics in locomoting cells
,”
Nature
352
,
126
(
1991
).
15.
T. J.
Mitchison
and
L. P.
Cramer
, “
Actin-based cell motility and cell locomotion
,”
Cell
84
,
371
(
1996
).
16.
E.
Tjhung
,
A.
Tiribocchi
,
D.
Marenduzzo
, and
M. E.
Cates
, “
A minimal physical model captures the shapes of crawling cells
,”
Nat. Commun.
6
,
5420
(
2015
).
17.
C.
Manzo
and
M. F.
Garcia-Parajo
, “
A review of progress in single particle tracking: From methods to biophysical insights
,”
Rep. Prog. Phys.
78
,
124601
(
2015
).
18.
U. S.
Schwarz
and
S. A.
Safran
, “
Physics of adherent cells
,”
Rev. Mod. Phys.
85
,
1327
(
2013
).
19.
K.
Keren
, “
Cell motility: The integrating role of the plasma membrane
,”
Eur. Biophys. J.
40
,
1013
(
2011
).
20.
Y.
Cao
 et al., “
Cell motility dependence on adhesive wetting
,”
Soft Matter
15
,
2043
(
2019
).
21.
J.
Steinwachs
,
C.
Metzner
,
K.
Skodzek
,
N.
Lang
,
I.
Thievessen
,
C.
Mark
,
S.
Münster
,
K. E.
Aifantis
, and
B.
Fabry
, “
Three-dimensional force microscopy of cells in biopolymer networks
,”
Nat. Methods
13
,
171
(
2016
).
22.
D.
Krapf
,
N.
Lukat
,
E.
Marinari
,
R.
Metzler
,
G.
Oshanin
,
C.
Selhuber-Unkel
,
A.
Squarcini
,
L.
Stadler
,
M.
Weiss
, and
X.
Xu
, “
Spectral content of a single non-Brownian trajectory
,”
Phys. Rev. X
9
,
011019
(
2019
).
23.
T. D.
Pollard
and
E. D.
Korn
, “
Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin
,”
J. Biol. Chem.
248
,
4682
(
1973
); available at http://www.jbc.org/content/248/13/4682.abstract.
24.
R. J.
Adams
and
T. D.
Pollard
, “
Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I
,”
Nature
322
,
754
(
1986
).
25.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
D.
Morgan
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
,
Molecular Biology of the Cell
, 6th ed. (
Garland Science
,
New York
,
2014
).
26.
F.
Jülicher
,
A.
Ajdari
, and
J.
Prost
, “
Modeling molecular motors
,”
Rev. Mod. Phys.
69
,
1269
(
1997
).
27.
A. B.
Kolomeisky
and
M. E.
Fisher
, “
Molecular motors: A theorist’s perspective
,”
Annu. Rev. Phys. Chem.
58
,
675
(
2007
).
28.
B.
Kachar
,
E. C.
Bridgman
, and
T. S.
Reese
, “
Dynamic shape changes of cytoplasmic organelles translocating along microtubules
,”
J. Cell Biol.
105
,
1267
(
1987
).
29.
K.
Chen
,
B.
Wang
, and
S.
Granick
, “
Memoryless self-reinforcing directionality in endosomal active transport within living cells
,”
Nat. Mater.
14
,
589
(
2015
).
30.
F.
Jülicher
,
K.
Kruse
,
J.
Prost
, and
J.-F.
Joanny
, “
Active behavior of the cytoskeleton
,”
Phys. Rep.
449
,
3
(
2007
).
31.
T. A.
Schroer
,
E. F.
Steuer
, and
M. P.
Sheetz
, “
Cytoplasmic dynein is a minus end-directed motor for membranous organelles
,”
Cell
56
,
937
(
1989
).
32.
N.
Hirokawa
, “
Kinesin and dynein superfamily proteins and the mechanism of organelle transport
,”
Science
279
,
519
(
1998
).
33.
A. J.
Roberts
,
T.
Kon
,
P. J.
Knight
,
K.
Sutoh
, and
S. A.
Burgess
, “
Functions and mechanics of dynein motor proteins
,”
Nat. Rev. Mol. Cell Biol.
14
,
713
(
2013
).
34.
N.
Bettache
,
L.
Baisamy
,
S.
Baghdiguian
,
B.
Payrastre
,
P.
Mangeat
, and
A.
Bienvenue
, “
Mechanical constraint imposed on plasma membrane through transverse phospholipid imbalance induces reversible actin polymerization via phosphoinositide 3-kinase activation
,”
J. Cell Sci.
116
,
2277
(
2003
).
35.
L.
Yan
,
R. L.
Cerny
, and
J. D.
Cirillo
, “
Evidence that hsp90 is involved in the altered interactions of Acanthamoeba castellanii variants with bacteria
,”
Eukaryotic Cell
3
,
567
(
2004
).
36.
See https://tinevez.github.io/msdanalyzer/ for the @msdanalyzer procedure.
37.
P.
Struntz
and
M.
Weiss
, “
The hitchhiker’s guide to quantitative diffusion measurements
,”
Phys. Chem. Chem. Phys.
20
,
28910
(
2018
).
38.
Y.
He
,
S.
Burov
,
R.
Metzler
, and
E.
Barkai
, “
Random time-scale invariant diffusion and transport coefficients
,”
Phys. Rev. Lett.
101
,
058101
(
2008
).
39.
S.
Burov
,
J.-H.
Jeon
,
R.
Metzler
, and
E.
Barkai
, “
Single particle tracking in systems showing anomalous diffusion: The role of weak ergodicity breaking
,”
Phys. Chem. Chem. Phys.
13
,
1800
(
2011
).
40.
J.-H.
Jeon
,
V.
Tejedor
,
S.
Burov
,
E.
Barkai
,
C.
Selhuber-Unkel
,
K.
Berg-Sørensen
,
L.
Oddershede
, and
R.
Metzler
, “
In vivo anomalous diffusion and weak ergodicity breaking of lipid granules
,”
Phys. Rev. Lett.
106
,
048103
(
2011
).
41.
I. M.
Sokolov
, “
Models of anomalous diffusion in crowded environments
,”
Soft Matter
8
,
9043
(
2012
).
42.
F.
Höfling
and
T.
Franosch
, “
Anomalous transport in the crowded world of biological cells
,”
Rep. Prog. Phys.
76
,
046602
(
2013
).
43.
R.
Metzler
,
J.-H.
Jeon
,
A. G.
Cherstvy
, and
E.
Barkai
, “
Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking
,”
Phys. Chem. Chem. Phys.
16
,
24128
(
2014
).
44.
R.
Metzler
,
J.-H.
Jeon
, and
A. G.
Cherstvy
, “
Non-Brownian diffusion in lipid membranes: Experiments and simulations
,”
Biochim. Biophys. Acta
1858
,
2451
(
2016
).
45.
K.
Nørregaard
,
R.
Metzler
,
C.
Ritter
,
K.
Berg-Sørensen
, and
L.
Oddershede
, “
Manipulation and motion of organelles and single molecules in living cells
,”
Chem. Rev.
117
,
4342
(
2017
).
46.
I.
Golding
and
E. C.
Cox
, “
Physical nature of bacterial cytoplasm
,”
Phys. Rev. Lett.
96
,
098102
(
2006
).
47.
A.
Caspi
,
R.
Granek
, and
M.
Elbaum
, “
Enhanced diffusion in active intracellular transport
,”
Phys. Rev. Lett.
85
,
5655
(
2000
).
48.
S.
Banks
and
C.
Fradin
, “
Anomalous diffusion of proteins due to molecular crowding
,”
Biophys. J.
89
,
2960
(
2005
).
49.
J.
Szymanski
and
M.
Weiss
, “
Elucidating the origin of anomalous diffusion in crowded fluids
,”
Phys. Rev. Lett.
103
,
038102
(
2009
).
50.
A. V.
Weigel
,
B.
Simon
,
M. M.
Tamkun
, and
D.
Krapf
, “
Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
6438
(
2011
).
51.
S. C.
Weber
,
A. J.
Spakowitz
, and
J. A.
Theriot
, “
Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm
,”
Phys. Rev. Lett.
104
,
238102
(
2010
).
52.
S. C.
Weber
,
M. A.
Thompson
,
W. E.
Moerner
,
A. J.
Spakowitz
, and
J. A.
Theriot
, “
Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function
,”
Biophys. J.
102
,
2443
(
2012
).
53.
J.-H.
Jeon
,
N.
Leijnse
,
L. B.
Oddershede
, and
R.
Metzler
, “
Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions
,”
New J. Phys.
15
,
045011
(
2013
).
54.
T. J.
Lampo
,
S.
Stylianidou
,
M. P.
Backlund
,
P. A.
Wiggins
, and
A. J.
Spakowitz
, “
Cytoplasmic RNA-protein particles exhibit non-Gaussian subdiffusive behavior
,”
Biophys. J.
112
,
532
(
2017
).
55.
G.
Seisenberger
,
M. U.
Ried
,
T.
Endre
,
H.
Büning
,
M.
Hallek
, and
C.
Bräuchle
, “
Real-time single-molecule imaging of the infection pathway of an adeno-associated virus
,”
Science
294
,
1929
(
2001
).
56.
F.
Etoc
,
E.
Balloul
,
C.
Vicario
,
D.
Normanno
,
D.
Liße
,
A.
Sittner
,
J.
Piehler
,
M.
Dahan
, and
M.
Coppey
, “
Non-specific interactions govern cytosolic diffusion of nanosized objects in mammalian cells
,”
Nat. Mater
17
,
740
(
2018
).
57.
M. S.
Song
,
H. C.
Moon
,
J.-H.
Jeon
, and
H. Y.
Park
, “
Neuronal messenger ribonucleoprotein transport follows an aging Lévy walk
,”
Nat. Commun.
9
,
344
(
2018
).
58.
X.
Michalet
, “
Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium
,”
Phys. Rev. E
82
,
041914
(
2010
).
59.
X.
Michalet
and
A. J.
Berglund
, “
Optimal diffusion coefficient estimation in single-particle tracking
,”
Phys. Rev. E
85
,
061916
(
2012
).
60.
W.
Deng
and
E.
Barkai
, “
Ergodic properties of fractional Brownian-Langevin motion
,”
Phys. Rev. E
79
,
011112
(
2009
).
61.
H.
Safdari
,
A. G.
Cherstvy
,
A. V.
Chechkin
,
F.
Thiel
,
I. M.
Sokolov
, and
R.
Metzler
, “
Quantifying the non-ergodicity of scaled Brownian motion
,”
J. Phys. A
48
,
375002
(
2015
).
62.
M.
Schwarzl
,
A.
Godec
, and
R.
Metzler
, “
Quantifying non-ergodicity of anomalous diffusion with higher order moments
,”
Sci. Rep.
7
,
3878
(
2017
).
63.
A. G.
Cherstvy
,
S.
Thapa
,
Y.
Mardoukhi
,
A. V.
Chechkin
, and
R.
Metzler
, “
Time averaged and ergodic properties of the Ornstein-Uhlenbeck process: Particle starting distributions and relaxation to stationarity
,”
Phys. Rev. E
98
,
022134
(
2018
).
64.
R.
Hou
,
A. G.
Cherstvy
,
R.
Metzler
, and
T.
Akimoto
, “
Biased continuous-time random walks for ordinary and equilibrium cases: Facilitation of diffusion, ergodicity breaking and ageing
,”
Phys. Chem. Chem. Phys.
20
,
20827
(
2018
).
65.
A. G.
Cherstvy
,
S.
Thapa
,
C. E.
Wagner
, and
R.
Metzler
, “
Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in mucin hydrogels
,”
Soft Matter
15
,
2526
(
2019
).
66.
B.
Bowers
and
E. D.
Korn
, “
Cytochemical identification of phosphatase activity in the contractile vacuole of Acanthamoeba castellanii
,”
J. Cell Biol.
59
,
784
(
1973
).
67.
N.
Chenouard
 et al., “
Objective comparison of particle tracking methods
,”
Nat. Methods
11
,
281
(
2014
).
68.
C. E.
Wagner
, “
Micro- and macro-rheological studies of the structure and association dynamics of biopolymer gels
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
2018
.
69.

This can be an artifact of the tracking procedure and the limited resolution of the image-acquisition setup; see also Sec. V A.

70.
R.
Motohashi
and
I.
Hanasaki
, “
Characterization of aqueous cellulose nanofiber dispersions from microscopy movie data of Brownian particles by trajectory analysis
,”
Nanoscale Adv.
1
,
421
(
2019
).
71.
E.
Yamamoto
,
T.
Akimoto
,
A. C.
Kalli
,
K.
Yasuoka
, and
M. S. P.
Sansom
, “
Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity
,”
Sci. Adv.
3
,
e1601871
(
2017
).
72.
C. L.
Vestergaard
,
P. C.
Blainey
, and
H.
Flyvbjerg
, “
Optimal estimation of diffusion coefficients from single-particle trajectories
,”
Phys. Rev. E
89
,
022726
(
2014
).
73.
A. A.
Sadoon
and
Y.
Wang
, “
Anomalous, non-Gaussian, viscoelastic, and age-dependent dynamics of histonelike nucleoid-structuring proteins in live Escherichia coli
,”
Phys. Rev. E
98
,
042411
(
2018
).
74.
A. G.
Cherstvy
,
A. V.
Chechkin
, and
R.
Metzler
, “
Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes
,”
New J. Phys.
15
,
083039
(
2013
).
75.
A. G.
Cherstvy
and
R.
Metzler
, “
Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes
,”
Phys. Chem. Chem. Phys.
15
,
20220
(
2013
).
76.
T.
Miyaguchi
,
T.
Akimoto
, and
E.
Yamamoto
, “
Langevin equation with fluctuating diffusivity: A two-state model
,”
Phys. Rev. E
94
,
012109
(
2016
).
77.
S.
Thapa
,
J.
Krog
,
M. A.
Lomholt
,
A. G.
Cherstvy
, and
R.
Metzler
, “
Bayesian model-comparison recipe for single-particle tracking data: Stochastic-diffusivity and fractional Brownian motion models
,”
Phys. Chem. Chem. Phys.
20
,
29018
(
2018
).
78.
D. S.
Martin
,
M. B.
Forstner
, and
J. A.
Käs
, “
Apparent subdiffusion inherent to single particle tracking
,”
Biophys. J.
83
,
2109
(
2002
).
79.
A. J.
Berglund
, “
Statistics of camera-based single-particle tracking
,”
Phys. Rev. E
82
,
011917
(
2010
).
80.
K.
Burnecki
,
E.
Kepten
,
Y.
Garini
,
G.
Sikora
, and
A.
Weron
, “
Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors—An alternative approach
,”
Sci. Rep.
5
,
11306
(
2015
).
81.
E.
Kepten
,
A.
Weron
,
G.
Sikora
,
K.
Burnecki
, and
Y.
Garini
, “
Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments
,”
PLoS ONE
10
,
e0117722
(
2015
).
82.
H.
Qian
,
M. P.
Sheetz
, and
E. L.
Elson
, “
Single particle tracking. Analysis of diffusion and flow in two-dimensional systems
,”
Biophys. J.
60
,
910
(
1991
).
83.
S. K.
Ghosh
,
A. G.
Cherstvy
, and
R.
Metzler
, “
Non-universal tracer diffusion in crowded media of non-inert obstacles
,”
Phys. Chem. Chem. Phys.
17
,
1847
(
2015
).
84.
A. G.
Cherstvy
,
A. V.
Chechkin
, and
R.
Metzler
, “
Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity
,”
Soft Matter
10
,
1591
(
2014
).
85.
S. K.
Ghosh
,
A. G.
Cherstvy
,
D. S.
Grebenkov
, and
R.
Metzler
, “
Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments
,”
New J. Phys.
18
,
013027
(
2016
).
86.
G. E.
Uhlenbeck
and
L. S.
Ornstein
, “
On the theory of the Brownian motion
,”
Phys. Rev.
36
,
823
(
1930
).
87.
Y.
Lanoiselee
and
D. S.
Grebenkov
, “
A model of non-Gaussian diffusion in heterogeneous media
,”
J. Phys. A: Math. Theor.
51
,
145602
(
2018
).
88.
M. V.
Chubynsky
and
G. W.
Slater
, “
Diffusing diffusivity: A model for anomalous, yet Brownian, diffusion
,”
Phys. Rev. Lett.
113
,
098302
(
2014
).
89.
A. G.
Cherstvy
and
R.
Metzler
, “
Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes
,”
Phys. Chem. Chem. Phys.
18
,
23840
(
2016
).
90.
A. V.
Chechkin
,
F.
Seno
,
R.
Metzler
, and
I. M.
Sokolov
, “
Brownian yet non-Gaussian diffusion: From superstatistics to subordination of diffusing diffusivities
,”
Phys. Rev. X
7
,
021002
(
2017
).
91.
R.
Jain
and
K. L.
Sebastian
, “
Lévy flight with absorption: A model for diffusing diffusivity with long tails
,”
Phys. Rev. E
95
,
032135
(
2017
).
92.
L.
Luo
and
M.
Yi
, “
Non-Gaussian diffusion in static disordered media
,”
Phys. Rev. E
97
,
042122
(
2018
).
93.
V.
Sposini
,
A. V.
Chechkin
,
F.
Seno
,
G.
Pagnini
, and
R.
Metzler
, “
Random diffusivity from stochastic equations: Comparison of two models for Brownian yet non-Gaussian diffusion
,”
New J. Phys.
20
,
043044
(
2018
).
94.
V.
Sposini
,
A. V.
Chechkin
, and
R.
Metzler
, “
First passage statistics for diffusing diffusivity
,”
J. Phys. A: Math. Theor.
52
,
04LT01
(
2019
).
95.
Y.
Golan
and
E.
Sherman
, “
Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane
,”
Nat. Commun.
8
,
15851
(
2017
).
96.
A. G.
Cherstvy
 et al. (unpublished).
97.
S.
Yu
,
J.
Sheats
,
P.
Cicuta
,
B.
Sclavi
,
M.
Cosentino Lagomarsino
, and
K. D.
Dorfman
, “
Subdiffusion of loci and cytoplasmic particles are different in compressed Escherichia coli cells
,”
Nat. Commun. Biol.
1
,
176
(
2018
).
98.
F.
Kindermann
 et al., “
Nonergodic diffusion of single atoms in a periodic potential
,”
Nat. Phys.
13
,
137
(
2017
).
99.
C.
Mark
,
C.
Metzner
,
L.
Lautscham
,
P. L.
Strissel
,
R.
Strick
, and
B.
Fabry
, “
Bayesian model selection for complex dynamic systems
,”
Nat. Commun.
9
,
1803
(
2018
).
100.
J.-H.
Jeon
,
H. M.-S.
Monne
,
M.
Javanainen
, and
R.
Metzler
, “
Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins
,”
Phys. Rev. Lett.
109
,
188103
(
2012
).
101.
Y.
Lanoiselee
,“
Revealing the transport mechanisms from a single trajectory in living cells
,” Ph.D. thesis,
Université Paris-Saclay
,
2019
.
102.
C.
Mark
, “
Heterogeneous stochastic processes in complex dynamic systems
,” Ph.D. thesis,
Friedrich-Alexander-Universität Erlangen-Nürnberg
,
2018
.
103.
M.
el Beheiry
,
M.
Dahan
, and
J.-B.
Masson
, “
InferenceMAP: Mapping of single-molecule dynamics with Bayesian inference
,”
Nat. Methods
12
,
594
(
2015
).
104.
A.
Lee
,
K.
Tsekouras
,
C.
Calderon
,
C.
Bustamante
, and
S.
Presse
, “
Unraveling the thousand word picture: An introduction to super-resolution data analysis
,”
Chem. Rev.
117
,
7276
(
2017
).
105.
C.
Beck
and
E. G. D.
Cohen
, “
Superstatistics
,”
Physica A
322
,
267
(
2003
).
106.
C.
Beck
, “
Superstatistical Brownian motion
,”
Prog. Theor. Phys. Suppl.
162
,
29
(
2006
).
107.
S.
Hapca
,
J. W.
Crawford
, and
I. M.
Young
, “
Anomalous diffusion of heterogeneous populations characterized by normal diffusion at the individual level
,”
J. R. Soc. Interface
6
,
111
(
2009
).
108.
C.
Metzner
,
C.
Mark
,
J.
Steinwachs
,
L.
Lautscham
,
F.
Stadler
, and
B.
Fabry
, “
Superstatistical analysis and modelling of heterogeneous random walks
,”
Nat. Commun.
6
,
7516
(
2015
).
109.
X.
Wang
,
W.
Deng
, and
Y.
Chen
, “
Ergodic properties of heterogeneous diffusion processes in a potential well
,” e-print arXiv:1901.10857.
110.
J.
Kärger
, “
NMR self-diffusion studies in heterogeneous systems
,”
Adv. Colloid Interface Sci.
23
,
129
(
1985
).
111.
E.
Fieremans
,
D. S.
Novikov
,
J. H.
Jensen
, and
J. A.
Helpern
, “
Monte Carlo study of a two-compartment exchange model of diffusion
,”
NMR Biomed.
23
,
711
(
2010
).
112.
T. C.
Rösch
,
L. M.
Oviedo-Bocanegra
,
G.
Fritz
, and
P. L.
Graumann
, “
SMTracker: A tool for quantitative analysis, exploration and visualization of single-molecule tracking data reveals highly dynamic binding of B. Subtilis global repressor AbrB throughout the genome
,”
Sci. Rep.
8
,
15747
(
2018
).
113.
A. B.
Kolomeisky
, “
Physics of protein-DNA interactions: Mechanisms of facilitated target search
,”
Phys. Chem. Chem. Phys.
13
,
2095
(
2011
).
114.
A. G.
Cherstvy
,
A. B.
Kolomeisky
, and
A. A.
Kornyshev
, “
Protein-DNA interactions: Reaching and recognizing the targets
,”
J. Phys. Chem. B
112
,
4741
(
2008
).
115.
M.
Bauer
and
R.
Metzler
, “
Generalized facilitated diffusion model for DNA-binding proteins with search and recognition states
,”
Biophys. J.
102
,
2321
(
2012
).
116.
T.
Wagner
,
A.
Kroll
,
C. R.
Haramagatti
,
H.-G.
Lipinski
, and
M.
Wiemann
, “
Classification and segmentation of nanoparticle diffusion trajectories in cellular micro environments
,”
PLoS ONE
12
,
e0170165
(
2017
).
117.
A. C. H.
Tsang
,
A. T.
Lam
, and
I. H.
Riedel-Kruse
, “
Polygonal motion and adaptable phototaxis via flagellar beat switching in the microswimmer Euglena gracilis
,”
Nat. Phys.
14
,
1216
(
2018
).
118.
J.
Mo
and
M. G.
Raizen
, “
Highly resolved Brownian motion in space and in time
,”
Ann. Rev. Fluid Mech.
51
,
403
(
2019
).
119.

Note that myosin-IC motors are abundant in the actin-rich edge of the cell, while myosin-II motors are present in the entire cytoplasm.

120.

Note that in this setup smaller vacuoles were technically harder to track because our detection algorithm is based on edge detection and subsequent Hough transformation, commonly used to detect circles. This procedure requires a threshold value for the minimal circle radius and for the sensitivity to be preset. So, if the radius is chosen too small, many “circles” that are not vacuoles would be undesirably detected.

121.

Note that the evaluation of the vacuoles’ center-of-mass position20 from their center-of-area coordinate requires an assumption of a uniform cell height. This has certain approximations. Fast-running AC cells appear to have a “fried-egg” geometry13,16 with a varying cell height from the surface. The videos indicate that the cells have thin leading edge in front and rather thick “sack of material” on the rear end, where large vacuoles are often located; see the video files in the supplementary material.

122.

This hampers the detection of small vacuoles for longer times. During amoebae diffusion, larger particles stay in a confident-detection plane for longer times introducing certain bias in the data (see the discussion in Refs. 56, 65, 67, and 68). Specifically, the focus depth still allowing a confident tracking is a couple of μm. Larger vacuoles are, thus, allowed to move larger distances in the vertical direction and still yield a detectable position. By contrast, for smaller vacuoles, the same displacement may lead to its disappearance from the viewfield and to trajectory termination. Thus, a slower subpopulation of smaller vacuoles gets over-represented in the data set.

123.

Note that the discrepancy of the EB parameter from the Brownian behavior may seem inconsistent with a close match of the MSD and mean TAMSD, as seen in Fig. 16 in the  Appendix. Theoretically, however, similar discrepancies in the behaviors of the ensemble- and time-averaged displacements versus the EB parameter were found and rationalized previously; see Ref. 76. This is the case, for instance, for diffusive systems where the relaxation time exceeds the measurement time (the length of time series).

124.

The TAMSD exponent varies substantially along the vacuole trajectories in the range of time-shifts probed for the autocorrelation function in Fig. 8. In virtue of a limited length of trajectories, the mean TAMSD does not reveal any extended region of anomalous diffusion with a roughly constant scaling exponent. Therefore, one cannot expect a universal curve for Cδt(t) to emerge when a rescaling of time t/δt is employed; see also the discussion in Ref. 52.

125.

This value, however, has a large standard deviation, again due to the fact that instantaneous speeds of vacuoles take rather discretized values in the current data set. Note here that small vacuoles which are slow can be over-represented in the current data set (generally, smaller tracers are more problematic to track for longer times; Fig. 14 in the  Appendix confirms this statement).

126.

We emphasize here, however, that if the mean vacuole radii—rather than the maximum radii—are used for the analysis, the vacuole distributions appear quite different; see Fig. 21 in the  Appendix. In this interpretation, for instance, the smallest vacuoles tend to occupy the central regions of the amoebae. The physical interpretation for the mean vacuole radius seems, however, less clear to us than for the maximum radius along a given track.

127.

To cure these “artificial” discreteness-based effects69 in displacements, speeds, and displacement autocorrelations of vacuoles, one can think of smearing out the vacuole positions recorded in these SPT experiments, prior to their statistical analysis. One can use a Gaussian-like smoothening function with width equal to several pixels of the microscopy image [not shown; see the inset of Fig. 7(b)]. This would then make the peaks in the speed distribution of Fig. 9 originating from the discreteness effects less pronounced. The elementary time scale involved in the computation of the average vacuole speed should then also be adjusted correspondingly (instead of setting it to one elementary time step, as in Fig. 9); see Ref. 52. Physically, only those tracer displacements exceeding the position-localization uncertainty52,58,78 should be used in the analysis of physical observables. The effects of varying localization error in these SPT experiments on the behavior of the fundamental quantities such as the TAMSD, the EB parameter, and the autocorrelation function would be interesting to study in the future96 once precision-controlled data are acquired for this motile system.

128.

Possible long-distance correlations in direction and motion speed of diffusing vacuoles—as a function of their separation inside a given amoeba—are an interesting subject to study. They could quantify the “reach” of hydrodynamic and other correlation-inducing interactions being transmitted through the cell cytoplasm. In the current data, however, the mutual distances between vacuoles were not recorded and this question cannot be addressed in principle.

Supplementary Material

You do not currently have access to this content.