In principle, many-electron correlation energy can be precisely computed from a reduced Wigner distribution function (W), thanks to a universal functional transformation (F), whose formal existence is akin to that of the exchange-correlation functional in density functional theory. While the exact dependence of F on W is unknown, a few approximate parametric models have been proposed in the past. Here, for a dataset of 923 one-dimensional external potentials with two interacting electrons, we apply machine learning to model F within the kernel Ansatz. We deal with over-fitting of the kernel to a specific region of phase-space by a one-step regularization not depending on any hyperparameters. Reference correlation energies have been computed by performing exact and Hartree–Fock calculations using discrete variable representation. The resulting models require W calculated at the Hartree–Fock level as input while yielding monotonous decay in the predicted correlation energies of new molecules reaching sub-chemical accuracy with training.

1.
E.
Hylleraas
,
Z. Phys.
48
,
469
(
1928
).
2.
H. F.
Schaefer
 III
,
Quantum Chemistry: The Development of Ab Initio Methods in Molecular Electronic Structure Theory
(
Dover Publications
,
2004
).
3.
E. A.
Hylleraas
,
Adv. Quantum Chem.
1
,
1
(
1964
).
4.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Intro to Advanced Electronic Structure Theory
(
Dover Publications
,
1996
).
5.
R.
Ramakrishnan
and
G.
Rauhut
,
J. Chem. Phys.
142
,
154118
(
2015
).
6.
R. G.
Parr
and
Y.
Weitao
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
1989
).
7.
F.
Jensen
,
Introduction to Computational Chemistry
(
John Wiley & Sons
,
2017
).
8.
P. L. A.
Popelier
,
Solving the Schrödinger Equation: Has Everything Been Tried?
(
World Scientific
,
2011
).
9.
P. M.
Gill
,
D. L.
Crittenden
,
D. P.
O’Neill
, and
N. A.
Besley
,
Phys. Chem. Chem. Phys.
8
,
15
(
2006
).
10.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
11.
D. P.
O’Neill
and
P. M.
Gill
,
Mol. Phys.
103
,
763
(
2005
).
12.
P. M.
Gill
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
107
,
229
(
2011
).
13.
J. C.
Snyder
,
M.
Rupp
,
K.
Hansen
,
K.-R.
Müller
, and
K.
Burke
,
Phys. Rev. Lett.
108
,
253002
(
2012
).
14.
L.
Hu
,
X.
Wang
,
L.
Wong
, and
G.
Chen
,
J. Chem. Phys.
119
,
11501
(
2003
).
15.
X.
Zheng
,
L.
Hu
,
X.
Wang
, and
G.
Chen
,
Chem. Phys. Lett.
390
,
186
(
2004
).
16.
R. M.
Balabin
and
E. I.
Lomakina
,
Phys. Chem. Chem. Phys.
13
,
11710
(
2011
).
17.
E. O.
Pyzer-Knapp
,
K.
Li
, and
A.
Aspuru-Guzik
,
Adv. Funct. Mater.
25
,
6495
(
2015
).
18.
R.
Ramakrishnan
and
O. A.
von Lilienfeld
,
CHIMIA Int. J. Chem.
69
,
182
(
2015
).
19.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
20.
P. C.
Hansen
,
Discrete Inverse Problems: Insight and Algorithms
(
SIAM
,
2010
), Vol. 7.
21.
F. A.
Faber
,
L.
Hutchison
,
B.
Huang
,
J.
Gilmer
,
S. S.
Schoenholz
,
G. E.
Dahl
,
O.
Vinyals
,
S.
Kearnes
,
P. F.
Riley
, and
O. A.
von Lilienfeld
,
J. Chem. Theory Comput.
13
,
5255
(
2017
).
22.
B.
Huang
and
O.
von Lilienfeld
,
J. Chem. Phys.
145
,
161102
(
2016
).
23.
R.
Ramakrishnan
,
M.
Hartmann
,
E.
Tapavicza
, and
O. A.
von Lilienfeld
,
J. Chem. Phys.
143
,
084111
(
2015
).
24.
K.
Hansen
,
F.
Biegler
,
R.
Ramakrishnan
,
W.
Pronobis
,
O. A.
von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
,
J. Phys. Chem. Lett.
6
,
2326
(
2015
).
25.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
von Lilienfeld
,
J. Chem. Theory Comput.
11
,
2087
(
2015
).
26.
K. T.
Schütt
,
H.
Glawe
,
F.
Brockherde
,
A.
Sanna
,
K. R.
Müller
, and
E. K. U.
Gross
,
Phys. Rev. B
89
,
205118
(
2014
).
27.
B.
Meredig
,
A.
Agrawal
,
S.
Kirklin
,
J. E.
Saal
,
J. W.
Doak
,
A.
Thompson
,
K.
Zhang
,
A.
Choudhary
, and
C.
Wolverton
,
Phys. Rev. B
89
,
094104
(
2014
).
28.
G.
Pilania
,
C.
Wang
,
X.
Jiang
,
S.
Rajasekaran
, and
R.
Ramprasad
,
Sci. Rep.
3
,
2810
(
2013
).
29.
L. M.
Ghiringhelli
,
J.
Vybiral
,
S. V.
Levchenko
,
C.
Draxl
, and
M.
Scheffler
,
Phys. Rev. Lett.
114
,
105503
(
2015
).
30.
F. A.
Faber
,
A.
Lindmaa
,
O. A.
von Lilienfeld
, and
R.
Armiento
,
Phys. Rev. Lett.
117
,
135502
(
2016
).
31.
F.
Faber
,
A.
Lindmaa
,
O. A.
von Lilienfeld
, and
R.
Armiento
,
Int. J. Quantum Chem.
115
,
1094
(
2015
).
32.
R.
Ramakrishnan
and
O. A.
von Lilienfeld
,
Rev. Comput. Chem.
30
,
225
(
2017
).
33.
O. A.
von Lilienfeld
,
Angew. Chem., Int. Ed.
57
,
4164
(
2018
).
34.
Y.-S.
Kim
and
M. E.
Noz
,
Phase Space Picture of Quantum Mechanics: Group Theoretical Approach
(
World Scientific
,
1991
), Vol. 40.
36.
J. J.
Włodarz
,
Phys. Lett. A
133
,
459
(
1988
).
39.
R.
Ramakrishnan
and
M.
Nest
,
Phys. Rev. A
85
,
054501
(
2012
).
40.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
41.
C. J.
Ball
,
P.-F.
Loos
, and
P. M.
Gill
,
Phys. Chem. Chem. Phys.
19
,
3987
(
2017
).
42.
P. M.
Gill
,
N. A.
Besley
, and
D. P.
O’Neill
,
Int. J. Quantum Chem.
100
,
166
(
2004
).
43.
E.
Moors
,
Bull. Am. Math. Soc.
26
,
394
(
1920
).
44.
R.
Penrose
,
Mathematical Proceedings of the Cambridge Philosophical Society
(
Cambridge University Press
,
1955
), Vol. 51, pp.
406
413
.
45.
B.
Schölkopf
and
A. J.
Smola
,
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
(
MIT Press
,
2002
).
46.
R.
Tibshirani
,
J. R. Stat. Soc., Ser. B
58
,
267
(
1996
).
47.
E.
Anderson
,
Z.
Bai
,
C.
Bischof
,
S.
Blackford
,
J.
Dongarra
,
J.
Du Croz
,
A.
Greenbaum
,
S.
Hammarling
,
A.
McKenney
, and
D.
Sorensen
,
LAPACK Users’ Guide
(
SIAM
,
1999
), Vol. 9.
48.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
(
JHU Press
,
2012
), Vol. 3.
49.
M.
Gu
and
S. C.
Eisenstat
,
SIAM J. Sci. Comput.
17
,
848
(
1996
).
50.
G.
Montavon
,
M.
Rupp
,
V.
Gobre
,
A.
Vazquez-Mayagoitia
,
K.
Hansen
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
,
New J. Phys.
15
,
095003
(
2013
).
51.
J. E.
Harriman
,
Energy, Structure and Reactivity: Proceedings of the 1972 Boulder Summer Research Conference on Theoretical Chemistry
(
Wiley
,
1972
), pp.
221
236
.
You do not currently have access to this content.