The squirmer is a simple yet instructive model for microswimmers, which employs an effective slip velocity on the surface of a spherical swimmer to describe its self-propulsion. We solve the hydrodynamic flow problem with the lattice Boltzmann (LB) method, which is well-suited for time-dependent problems involving complex boundary conditions. Incorporating the squirmer into LB is relatively straightforward, but requires an unexpectedly fine grid resolution to capture the physical flow fields and behaviors accurately. We demonstrate this using four basic hydrodynamic tests: two for the far-field flow—accuracy of the hydrodynamic moments and squirmer-squirmer interactions—and two that require the near field to be accurately resolved—a squirmer confined to a tube and one scattering off a spherical obstacle—which LB is capable of doing down to the grid resolution. We find good agreement with (numerical) results obtained using other hydrodynamic solvers in the same geometries and identify a minimum required resolution to achieve this reproduction. We discuss our algorithm in the context of other hydrodynamic solvers and present an outlook on its application to multi-squirmer problems.

1.
2.
C.
Hoell
and
H.
Löwen
,
Phys. Rev. E
84
,
042903
(
2011
).
3.
M. C.
Marchetti
,
J.-F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
,
Rev. Mod. Phys.
85
,
1143
(
2013
).
4.
D. B.
Kearns
,
Nat. Rev. Microbiol.
8
,
634
(
2010
).
5.
H. H.
Wensink
,
J.
Dunkel
,
S.
Heidenreich
,
K.
Drescher
,
R. E.
Goldstein
,
H.
Löwen
, and
J. M.
Yeomans
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
14308
(
2012
).
6.
J.
Gachelin
,
A.
Rousselet
,
A.
Lindner
, and
E.
Clement
,
New J. Phys.
16
,
025003
(
2014
).
7.
J. R.
Howse
,
R. A.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
,
Phys. Rev. Lett.
99
,
048102
(
2007
).
8.
A.
Erbe
,
M.
Zientara
,
L.
Baraban
,
C.
Kreidler
, and
P.
Leiderer
,
J. Phys.: Condens. Matter
20
,
404215
(
2008
).
9.
H.-R.
Jiang
,
N.
Yoshinaga
, and
M.
Sano
,
Phys. Rev. Lett.
105
,
268302
(
2010
).
10.
I.
Buttinoni
,
G.
Volpe
,
F.
Kümmel
,
G.
Volpe
, and
C.
Bechinger
,
J. Phys.: Condens. Matter
24
,
284129
(
2012
).
11.
M.
Ibele
,
T. E.
Mallouk
, and
A.
Sen
,
Angew. Chem.
121
,
3358
(
2009
).
12.
J.
Palacci
,
S.
Sacanna
,
A. P.
Steinberg
,
D. J.
Pine
, and
P. M.
Chaikin
,
Science
339
,
936
(
2013
).
13.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
,
Phys. Rev. Lett.
75
,
1226
(
1995
).
14.
P.
Romanczuk
,
M.
Bär
,
W.
Ebeling
,
B.
Lindner
, and
L.
Schimansky-Geier
,
Eur. Phys. J.: Spec. Top.
202
,
1
(
2012
).
15.
W.
Ebeling
,
F.
Schweitzer
, and
B.
Tilch
,
BioSystems
49
,
17
(
1999
).
16.
M.
Lighthill
,
Commun. Pure Appl. Math.
5
,
109
(
1952
).
17.
18.
F.
Alarcón
and
I.
Pagonabarraga
,
J. Mol. Liq.
185
,
56
(
2013
).
19.
G.
Gonnella
,
D.
Marenduzzo
,
A.
Suma
, and
A.
Tiribocchi
,
C. R. Phys.
16
,
316
(
2015
).
20.
A.
Zöttl
and
H.
Stark
,
Phys. Rev. Lett.
112
,
118101
(
2014
).
21.
G. R.
McNamara
and
G.
Zanetti
,
Phys. Rev. Lett.
61
,
2332
(
1988
).
22.
A. J. C.
Ladd
,
J. Fluid Mech.
271
,
285
(
1994
).
23.
C.
Godenschwager
,
F.
Schornbaum
,
M.
Bauer
,
H.
Köstler
, and
U.
Rüde
, in
Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis
(
Association for Computing Machinery
,
2013
), p.
35
.
24.
M. T.
Downton
and
H.
Stark
,
J. Phys.: Condens. Matter
21
,
204101
(
2009
).
25.
M.
Theers
,
E.
Westphal
,
G.
Gompper
, and
R. G.
Winkler
,
Soft Matter
12
,
7372
(
2016
).
26.
M.
Theers
,
E.
Westphal
,
K.
Qi
,
R. G.
Winkler
, and
G.
Gompper
,
Soft Matter
14
,
8590
8603
(
2018
).
27.
L.
Zhu
,
E.
Lauga
, and
L.
Brandt
,
Phys. Fluids
24
,
051902
(
2012
).
28.
N.
Aguillon
,
A.
Decoene
,
B.
Fabrèges
,
B.
Maury
, and
B.
Semin
, in
ESAIM: Proceedings
(
EDP Sciences
,
2012
), Vol. 38, pp.
36
53
.
29.
M.
De Corato
and
G.
D’Avino
,
Soft Matter
13
,
196
(
2017
).
30.
T.
Ishikawa
,
M.
Simmonds
, and
T.
Pedley
,
J. Fluid Mech.
568
,
119
(
2006
).
31.
K.
Ishimoto
and
E. A.
Gaffney
,
Phys. Rev. E
88
,
062702
(
2013
).
32.
L.
Zhu
,
E.
Lauga
, and
L.
Brandt
,
J. Fluid Mech.
726
,
285
(
2013
).
33.
W.
Uspal
,
M.
Popescu
,
S.
Dietrich
, and
M.
Tasinkevych
,
Soft Matter
11
,
6613
(
2015
).
34.
T.
Ishikawa
and
T.
Pedley
,
Phys. Rev. Lett.
100
,
088103
(
2008
).
35.
T.
Ishikawa
,
J.
Locsei
, and
T.
Pedley
,
J. Fluid Mech.
615
,
401
(
2008
).
36.
A.
Chamolly
,
T.
Ishikawa
, and
E.
Lauga
,
New J. Phys.
19
,
115001
(
2017
).
37.
J. S.
Lintuvuori
,
A. T.
Brown
,
K.
Stratford
, and
D.
Marenduzzo
,
Soft Matter
12
,
7959
(
2016
).
38.
I.
Llopis
and
I.
Pagonabarraga
,
J. Non-Newtonian Fluid Mech.
165
,
946
(
2010
).
39.
F.
Alarcón
,
C.
Valeriani
, and
I.
Pagonabarraga
,
Soft Matter
13
,
814
(
2017
).
40.
S. E.
Spagnolie
,
G. R.
Moreno-Flores
,
D.
Bartolo
, and
E.
Lauga
,
Soft Matter
11
,
3396
(
2015
).
41.
M. E.
Cates
and
J.
Tailleur
,
Annu. Rev. Condens. Matter Phys.
6
,
219
(
2015
).
42.
K.
Drescher
,
R.
Goldstein
,
N.
Michel
,
M.
Polin
, and
I.
Tuval
,
Phys. Rev. Lett.
105
,
168101
(
2010
).
43.
T.
Ishikawa
,
J. R. Soc., Interface
6
,
815
(
2009
).
44.
E.
Lauga
and
T. R.
Powers
,
Rep. Prog. Phys.
72
,
096601
(
2009
).
45.
K.
Drescher
,
J.
Dunkel
,
L.
Cisneros
,
S.
Ganguly
, and
R.
Goldstein
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
10940
(
2011
).
46.
T.
Ishikawa
and
M.
Hota
,
J. Exp. Biol.
209
,
4452
(
2006
).
47.
I.
Ginzburg
,
F.
Verhaeghe
, and
D.
d’Humières
,
Commun. Comput. Phys.
3
,
427
(
2008
).
48.
I.
Ginzburg
,
F.
Verhaeghe
, and
D.
d’Humières
,
Commun. Comput. Phys.
3
,
519
(
2008
).
49.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
,
Phys. Rev. E
65
,
046308
(
2002
).
50.
H.
Huang
,
M.
Krafczyk
, and
X.
Lu
,
Phys. Rev. E
84
,
046710
(
2011
).
51.
Q.
Zou
and
X.
He
,
Phys. Fluids
9
,
1591
(
1997
).
52.
E.
Purcell
,
Am. J. Phys.
45
,
3
(
1977
).
53.
C. K.
Aidun
,
Y.
Lu
, and
E.-J.
Ding
,
J. Fluid Mech.
373
,
287
(
1998
).
54.
C.
Rettinger
and
U.
Rüde
,
Comput. Fluids
154
,
74
(
2017
).
55.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
56.
J.
Götz
,
K.
Iglberger
,
C.
Feichtinger
,
S.
Donath
, and
U.
Rüde
,
Parallel Comput.
36
,
142
(
2010
).
57.
Z.
Shen
,
A.
Würger
, and
J. S.
Lintuvuori
,
Soft Matter
15
,
1508
(
2019
).
58.
Z.
Shen
,
A.
Würger
, and
J. S.
Lintuvuori
,
Eur. Phys. J. E
41
,
39
(
2018
).
59.
J.
de Graaf
and
J.
Stenhammar
,
J. Fluid Mech.
811
,
487
(
2017
).
60.
T. C.
Adhyapak
and
S.
Jabbari-Farouji
,
J. Chem. Phys.
149
,
144110
(
2018
).
61.
J. F.
Brady
,
R. J.
Phillips
,
J. C.
Lester
, and
G.
Bossis
,
J. Fluid Mech.
195
,
257
(
1988
).
62.
N.-Q.
Nguyen
and
A.
Ladd
,
Phys. Rev. E
66
,
046708
(
2002
).
63.
I.
Pagonabarraga
and
I.
Llopis
,
Soft Matter
9
,
7174
(
2013
).
64.
M.
Kuron
,
G.
Rempfer
,
F.
Schornbaum
,
M.
Bauer
,
C.
Godenschwager
,
C.
Holm
, and
J.
de Graaf
,
J. Chem. Phys.
145
,
214102
(
2016
).
65.
D.
Noble
and
J.
Torczynski
,
Int. J. Mod. Phys. C
9
,
1189
(
1998
).
66.
J.
de Graaf
and
J.
Stenhammar
,
Phys. Rev. E
95
,
023302
(
2017
).
67.
F.
Schornbaum
and
U.
Rüde
,
SIAM J. Sci. Comput.
38
,
C96
(
2016
).
68.
J.
de Graaf
,
A. J.
Mathijssen
,
M.
Fabritius
,
H.
Menke
,
C.
Holm
, and
T. N.
Shendruk
,
Soft Matter
12
,
4704
(
2016
).
69.
A. J.
Mathijssen
,
D. O.
Pushkin
, and
J. M.
Yeomans
,
J. Fluid Mech.
773
,
498
(
2015
).
70.
X.
Shen
,
H. C.
Fu
 et al,
Phys. Rev. E
95
,
033105
(
2017
).
71.
J. F.
Brady
and
G.
Bossis
,
Annu. Rev. Fluid Mech.
20
,
111
(
1988
).
72.
L.
Durlofsky
,
J. F.
Brady
, and
G.
Bossis
,
J. Fluid Mech.
180
,
21
(
1987
).
You do not currently have access to this content.