The theory of nonlocal isothermal hydrodynamics near a solid object derived microscopically in the study by Camargo et al. [J. Chem. Phys. 148, 064107 (2018)] is considered under the conditions that the flow fields are of macroscopic character. We show that in the limit of macroscopic flows, a simple pillbox argument implies that the reversible and irreversible forces that the solid exerts on the fluid can be represented in terms of boundary conditions. In this way, boundary conditions are derived from the underlying microscopic dynamics of the fluid-solid system. These boundary conditions are the impenetrability condition and the Navier slip boundary condition. The Green-Kubo transport coefficients associated with the irreversible forces that the solid exert on the fluid appear naturally in the slip length. The microscopic expression for the slip length thus obtained is shown to coincide with the one provided originally by Bocquet and Barrat [Phys. Rev. E 49, 3079 (1994)].

1.
D.
Camargo
,
J. A.
de la Torre
,
D.
Duque-Zumajo
,
P.
Español
,
R.
Delgado-Buscalioni
, and
F.
Chejne
,
J. Chem. Phys.
148
,
064107
(
2018
).
2.
H.
Grabert
,
Projection Operator Techniques in Nonequilibrium Statistical Mechanics
(
Springer
,
1982
).
3.
J. G.
Anero
,
P.
Español
, and
P.
Tarazona
,
J. Chem. Phys.
139
,
034106
(
2013
).
4.
J. H.
Irving
and
J. G.
Kirkwood
,
J. Chem. Phys.
18
,
817
(
1950
).
5.
R.
Piccirelli
,
Phys. Rev.
175
,
77
(
1968
).
6.
D.
Duque-Zumajo
,
D.
Camargo
,
J. A.
de la Torre
,
F.
Chejne
,
P.
Español
, “
Discrete hydrodynamics near solid planar walls
” (unpublished).
7.
D.
Duque-Zumajo
,
J. A.
de la Torre
, and
P.
Español
, “
Slip and non-Markovian effects in nanohydrodynamics
” (unpublished).
8.
D.
Duque-Zumajo
,
D.
Camargo
,
J. A.
de la Torre
,
F.
Chejne
, and
P.
Español
, “
Discrete hydrodynamics near solid walls: Slip and non-Markovian effects
” (unpublished).
9.
D.
Duque-Zumajo
,
D.
Camargo
,
J. A.
de la Torre
,
F.
Chejne
, and
P.
Español
, “
Space and time locality for discrete hydrodynamics in unconfined fluids
” (unpublished).
10.
D.
Bedeaux
,
A.
Albano
, and
P.
Mazur
,
Physica A
82
,
438
(
1976
).
11.
D.
Bedeaux
,
Advances in Chemical Physics
(
Wiley & Sons
,
1986
), Vol. LXIV, p.
47
.
12.
D.
Einzel
,
P.
Panzer
, and
M.
Liu
,
Phys. Rev. Lett.
64
,
2269
(
1990
).
13.
P.
Sheng
,
T.
Qian
, and
X.
Wang
,
Int. J. Mod. Phys. B
21
,
4131
(
2007
).
14.
T.
Qian
,
C.
Qiu
, and
P.
Sheng
,
J. Fluid Mech.
611
,
333
364
(
2008
).
15.
H. C.
Öttinger
,
J. Non-Newtonian Fluid Mech.
152
,
66
(
2008
).
16.
17.
H.
Brenner
and
V.
Ganesan
,
Phys. Rev. E
61
,
6879
(
2000
).
18.
L.
Bocquet
and
J.-L.
Barrat
,
Phys. Rev. E
49
,
3079
(
1994
).
19.
J.
Barrat
and
F.
Chiaruttini
,
Mol. Phys.
101
(
11
),
1605
(
2003
).
20.
J.
Petravic
and
P.
Harrowell
,
J. Chem. Phys.
127
,
174706
(
2007
).
21.
J.
Hansen
,
B. D.
Todd
, and
P. J.
Daivis
,
Phys. Rev. E
84
,
016313
(
2011
).
22.
S. K.
Kannam
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
,
J. Chem. Phys.
135
,
144701
(
2011
).
23.
K.
Huang
and
I.
Szlufarska
,
Phys. Rev. E
89
,
032119
(
2014
).
24.
B.
Ramos-Alvarado
,
S.
Kumar
, and
G. P.
Peterson
,
Phys. Rev. E
93
,
023101
(
2016
).
25.
P.
Daivis
and
B.
Todd
,
Processes
6
,
144
(
2018
).
26.
S.
Chen
,
H.
Wang
,
T.
Qian
, and
P.
Sheng
,
Phys. Rev. E
92
,
043007
(
2015
).
27.
P.
Español
,
J.
de la Torre
, and
D.
Duque-Zumajo
,
Phys. Rev. E
99
,
022126
(
2018
).
28.
W.
Chen
,
R.
Zhang
, and
J.
Koplik
,
Phys. Rev. E
89
,
023005
(
2014
).
29.
A.
Popadić
,
J. H.
Walther
,
P.
Koumoutsakos
, and
M.
Praprotnik
,
New J. Phys.
16
,
082001
(
2014
).
30.
J.-P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
London
,
1986
).
31.
T.
Weinhart
,
A. R.
Thornton
,
S.
Luding
, and
O.
Bokhove
,
Granular Matter
14
,
289
(
2012
).
32.
P.
Tarazona
,
J. A.
Cuesta
, and
Y.
Martinez-Raton
, in
Lecture Notes on Physics
, edited by
Á.
Mulero
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2008
), Vol. 753, pp.
247
341
.
33.
P.
Español
and
A.
Donev
,
J. Chem. Phys.
143
,
234104
(
2015
).
34.
J. T.
Hynes
,
R.
Kapral
, and
M.
Weinberg
,
J. Chem. Phys.
70
,
1456
(
1979
).
35.
D.
Lesnicki
and
R.
Vuilleumier
,
J. Chem. Phys.
147
,
094502
(
2017
).
36.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
2001
).
37.
B. A.
Dalton
,
K. S.
Glavatskiy
,
P. J.
Daivis
,
B. D.
Todd
,
I. K.
Snook
,
B. A.
Dalton
,
K. S.
Glavatskiy
,
P. J.
Daivis
, and
B. D.
Todd
,
J. Chem. Phys.
139
,
044510
(
2013
).
38.
B. A.
Dalton
,
K. S.
Glavatskiy
, and
P. J.
Daivis
,
Phys. Rev. E
92
,
012108
(
2015
).
39.
B.
Todd
and
P.
Daivis
,
Nonequilibrium Molecular Dynamics
(
Cambridge University Press
,
2017
).
You do not currently have access to this content.