When fluids of anisotropic molecules are placed in temperature gradients, the molecules may align themselves along the gradient: this is called thermo-orientation. We discuss the theory of this effect in a fluid of particles that interact by a spherically symmetric potential, where the particles’ centres of mass do not coincide with their interaction centres. Starting from the equations of motion of the molecules, we show how a simple assumption of local equipartition of energy can be used to predict the thermo-orientation effect, recovering the result of Wirnsberger et al. [Phys. Rev. Lett. 120, 226001 (2018)]. Within this approach, we show that for particles with a single interaction centre, the thermal centre of the molecule must coincide with the interaction centre. The theory also explains the coupling between orientation and kinetic energy that is associated with this non-Boltzmann distribution. We discuss deviations from this local equipartition assumption, showing that these can occur in linear response to a temperature gradient. We also present numerical simulations showing significant deviations from the local equipartition predictions, which increase as the centre of mass of the molecule is displaced further from its interaction centre.

1.
S.
Duhr
and
D.
Braun
, “
Why molecules move along a temperature gradient
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
19678
(
2006
).
2.
J.
Burelbach
,
D.
Frenkel
,
I.
Pagonabarraga
, and
E.
Eiser
, “
A unified description of colloidal thermophoresis
,”
Eur. Phys. J. E
41
,
7
(
2018
).
3.
R.
Ganti
,
Y.
Liu
, and
D.
Frenkel
, “
Molecular simulation of thermo-osmotic slip
,”
Phys. Rev. Lett.
119
,
038002
(
2017
).
4.
S.
Rosenblat
and
G. A.
Tanaka
, “
Modulation of thermal convection instability
,”
Phys. Fluids
14
,
1319
(
1971
).
5.
F.
Römer
,
F.
Bresme
,
J.
Muscatello
,
D.
Bedeaux
, and
J. M.
Rubí
, “
Thermomolecular orientation of nonpolar fluids
,”
Phys. Rev. Lett.
108
,
105901
(
2012
).
6.
C. D.
Daub
,
J.
Tafjord
,
S.
Kjelstrup
,
D.
Bedeaux
, and
F.
Bresme
, “
Molecular alignment in molecular fluids induced by coupling between density and thermal gradients
,”
Phys. Chem. Chem. Phys.
18
,
12213
(
2016
).
7.
A. A.
Lee
, “
Microscopic mechanism of thermomolecular orientation and polarization
,”
Soft Matter
12
,
8661
(
2016
).
8.
P.
Wirnsberger
,
C.
Dellago
,
D.
Frenkel
, and
A.
Reinhardt
, “
Theoretical prediction of thermal polarization
,”
Phys. Rev. Lett.
120
,
226001
(
2018
).
9.
A.
Gardin
and
A.
Ferrarini
, “
Thermo-orientation in fluids of arbitrarily shaped particles
,”
Phys. Chem. Chem. Phys.
21
,
104
(
2019
).
10.
J. D.
Olarte-Plata
and
F.
Bresme
, “
Theoretical description of the thermomolecular orientation of anisotropic colloids
,”
Phys. Chem. Chem. Phys.
21
,
1131
(
2019
).
11.
F.
Bresme
,
A.
Lervik
,
D.
Bedeaux
, and
S.
Kjelstrup
, “
Water polarization under thermal gradients
,”
Phys. Rev. Lett.
101
,
020602
(
2008
).
12.
J.
Muscatello
,
F.
Römer
,
J.
Sala
, and
F.
Bresme
, “
Water under temperature gradients: Polarization effects and microscopic mechanisms of heat transfer
,”
Phys. Chem. Chem. Phys.
13
,
19970
(
2011
).
13.
J. A.
Armstrong
and
F.
Bresme
, “
Water polarization induced by thermal gradients: The extended simple point charge model (SPC/E)
,”
J. Chem. Phys.
139
,
014504
(
2013
).
14.
I.
Iriarte-Carretero
,
M. A.
Gonzalez
,
J.
Armstrong
,
F.
Fernandez-Alonso
, and
F.
Bresme
, “
The rich phase behavior of the thermopolarization of water: From a reversal in the polarization, to enhancement near criticality conditions
,”
Phys. Chem. Chem. Phys.
18
,
19894
(
2016
).
15.
P.
Wirnsberger
,
D.
Fijan
,
A.
Šarić
,
M.
Neumann
,
C.
Dellago
, and
D.
Frenkel
, “
Non-equilibrium simulations of thermally induced electric fields in water
,”
J. Chem. Phys.
144
,
224102
(
2016
).
16.
C. D.
Daub
,
P.-O.
Åstrand
, and
F.
Bresme
, “
Thermo-molecular orientation effects in fluids of dipolar dumbbells
,”
Phys. Chem. Chem. Phys.
16
,
22097
(
2014
).
17.
P.
Wirnsberger
,
D.
Fijan
,
R. A.
Lightwood
,
A.
Šarić
,
C.
Dellago
, and
D.
Frenkel
, “
Numerical evidence for thermally induced monopoles
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
4911
(
2017
).
18.
S. R.
de Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
(
Dover Publications
,
New York
,
1984
).
19.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic Press
,
2006
).
20.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases
, 3rd edition (
CUP
,
Cambridge
,
1990
).
21.
J. H.
Irving
and
J. G.
Kirkwood
, “
The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics
,”
J. Chem. Phys.
18
,
817
(
1950
).
22.
S. C.
Takatori
,
W.
Yan
, and
J. F.
Brady
, “
Swim pressure: Stress generation in active matter
,”
Phys. Rev. Lett.
113
,
028103
(
2014
).
23.
A. P.
Solon
,
Y.
Fily
,
A.
Baskaran
,
M. E.
Cates
,
Y.
Kafri
,
M.
Kardar
, and
J.
Tailleur
, “
Pressure is not a state function for generic active fluids
,”
Nat. Phys.
11
,
673
(
2015
).
24.
R. G.
Winkler
,
A.
Wysocki
, and
G.
Gompper
, “
Virial pressure in systems of spherical active Brownian particles
,”
Soft Matter
11
,
6680
(
2015
).
25.
T.
Speck
and
R. L.
Jack
, “
Ideal bulk pressure of active Brownian particles
,”
Phys. Rev. E
93
,
062605
(
2016
).
26.
S.
Steffenoni
,
G.
Falasco
, and
K.
Kroy
, “
Microscopic derivation of the hydrodynamics of active-Brownian-particle suspensions
,”
Phys. Rev. E
95
,
052142
(
2017
).
27.
K.
Klymko
,
D.
Mandal
, and
K. K.
Mandadapu
, “
Statistical mechanics of transport processes in active fluids: Equations of hydrodynamics
,”
J. Chem. Phys.
147
,
194109
(
2017
).
28.
J.
Ross
and
P.
Mazur
, “
Some deductions from a formal statistical mechanical theory of chemical kinetics
,”
J. Chem. Phys.
35
,
19
(
1961
).
29.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
(
1995
).
You do not currently have access to this content.