Markov state models (MSMs) provide some of the simplest mathematical and physical descriptions of dynamical and thermodynamical properties of complex systems. However, typically, the large dimensionality of biological systems studied makes them prohibitively expensive to work in fully Markovian regimes. In this case, coarse graining can be introduced to capture the key dynamical processes—slow degrees of the system—and reduce the dimension of the problem. Here, we introduce several possible options for such Markovian coarse graining, including previously commonly used choices: the local equilibrium and the Hummer Szabo approaches. We prove that the coarse grained lower dimensional MSM satisfies a variational principle with respect to its slowest relaxation time scale. This provides an excellent framework for optimal coarse graining, as previously demonstrated. Here, we show that such optimal coarse graining to two or three states has a simple physical interpretation in terms of mean first passage times and fluxes between the coarse grained states. The results are verified numerically using both analytic test potentials and data from explicit solvent molecular dynamics simulations of pentalanine. This approach of optimizing and interpreting clustering protocols has broad applicability and can be used in time series analysis of large data.

1.
S.
Kube
and
M.
Weber
,
J. Chem. Phys.
126
,
024103
(
2007
).
2.
F.
Noé
,
I.
Horenko
,
C.
Schütte
, and
J. C.
Smith
,
J. Chem. Phys.
126
,
155102
(
2007
).
3.
J. D.
Chodera
,
N.
Singhal
,
V. S.
Pande
,
K. A.
Dill
, and
W. C.
Swope
,
J. Chem. Phys.
126
,
155101
(
2007
).
4.
D.
Bicout
and
A.
Szabo
,
Protein Sci.
9
,
452
(
2000
).
5.
N.-V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
(
2008
).
6.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
,
Methods
52
,
99
(
2010
).
7.
G. R.
Bowman
,
V. S.
Pande
, and
F.
Noé
,
An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
(
Springer Netherlands
,
2014
).
8.
B. E.
Husic
and
V. S.
Pande
,
J. Am. Chem. Soc.
140
,
2386
(
2018
).
9.
C.
Wehmeyer
,
M. K.
Scherer
,
T.
Hempel
,
B. E.
Husic
,
S.
Olsson
, and
F.
Noé
,
Living J. Comput. Mol. Sci.
1
,
5965
(
2018
); available at https://www.livecomsjournal.org/article/5965-introduction-to-markov-state-modeling-with-the-pyemma-software-article-v1-0.
10.
H.
Grubmüller
and
P.
Tavan
,
J. Chem. Phys.
101
,
5047
(
1994
).
11.
M. I.
Zimmerman
,
K. M.
Hart
,
C. A.
Sibbald
,
T. E.
Frederick
,
J. R.
Jimah
,
C. R.
Knoverek
,
N. H.
Tolia
, and
G. R.
Bowman
,
ACS Cent. Sci.
3
,
1311
(
2017
).
12.
M. P.
Harrigan
,
K. A.
McKiernan
,
V.
Shanmugasundaram
,
R. A.
Denny
, and
V. S.
Pande
,
Sci. Rep.
7
,
632
(
2017
).
13.
C. J.
Dickson
,
V.
Hornak
,
R. A.
Pearlstein
, and
J. S.
Duca
,
J. Am. Chem. Soc.
139
,
442
(
2017
).
14.
A.
Kells
,
A.
Annibale
, and
E.
Rosta
,
J. Chem. Phys.
149
,
072324
(
2018
).
15.
K. M.
Thayer
,
B.
Lakhani
, and
D. L.
Beveridge
,
J. Phys. Chem. B
121
,
5509
(
2017
).
16.
A.
Bujotzek
and
M.
Weber
,
J. Bioinf. Comput. Biol.
07
,
811
(
2009
).
17.
S.
Doerr
and
G.
De Fabritiis
,
J. Chem. Theory Comput.
10
,
2064
(
2014
).
18.
M.
Badaoui
,
A.
Kells
,
C.
Molteni
,
C. J.
Dickson
,
V.
Hornak
, and
E.
Rosta
,
J. Phys. Chem. B
122
,
11571
(
2018
).
19.
C. T.
Leahy
,
A.
Kells
,
G.
Hummer
,
N.-V.
Buchete
, and
E.
Rosta
,
J. Chem. Phys.
147
,
152725
(
2017
).
20.
H.
Wu
and
F.
Noé
,
Multiscale Model. Simul.
12
,
25
(
2014
).
21.
E.
Rosta
and
G.
Hummer
,
J. Chem. Theory Comput.
11
,
276
(
2014
).
22.
L. S.
Stelzl
,
A.
Kells
,
E.
Rosta
, and
G.
Hummer
,
J. Chem. Theory Comput.
13
,
6328
(
2017
).
23.
G. R.
Bowman
,
X.
Huang
, and
V. S.
Pande
,
Methods
49
,
197
(
2009
).
24.
L.
Martini
,
A.
Kells
,
R.
Covino
,
G.
Hummer
,
N.-V.
Buchete
, and
E.
Rosta
,
Phys. Rev. X
7
,
031060
(
2017
).
25.
R.
Zwanzig
,
J. Stat. Phys.
30
,
255
(
1983
).
26.
P.
Deuflhard
,
W.
Huisinga
,
A.
Fischer
, and
C.
Schütte
,
Linear Algebra Appl.
315
,
39
(
2000
).
27.
M.
Weber
and
K.
Fackeldey
, “
G-PCCA: Spectral clustering for non-reversible Markov chains
,” Technical Report No. 15-35, ZIB, Takustr. 7,
Berlin
,
2015
.
28.
S.
Röblitz
and
M.
Weber
,
Adv. Data Anal. Classif.
7
,
147
(
2013
).
29.
P.
Deuflhard
and
M.
Weber
,
Linear Algebra Appl.
398
,
161
(
2005
).
30.
M.
Weber
, “
Clustering by using a simplex structure
,” Technical Report No. 04-03, ZIB, Takustr. 7,
Berlin
,
2003
.
31.
M.
Weber
, “
Improved Perron cluster analysis
,” Technical Report No. 03-04, ZIB, Takustr. 7,
Berlin
,
2003
)
32.
Y.
Yao
,
R. Z.
Cui
,
G. R.
Bowman
,
D.-A.
Silva
,
J.
Sun
, and
X.
Huang
,
J. Chem. Phys.
138
,
174106
(
2013
).
33.
I.
Horenko
,
E.
Dittmer
,
A.
Fischer
, and
C.
Schütte
,
Multiscale Model. Simul.
5
,
802
(
2006
).
34.
V.
Schultheis
,
T.
Hirschberger
,
H.
Carstens
, and
P.
Tavan
,
J. Chem. Theory Comput.
1
,
515
(
2005
).
35.
G. R.
Bowman
,
J. Chem. Phys.
137
,
134111
(
2012
).
36.
W.
Wang
,
T.
Liang
,
F. K.
Sheong
,
X.
Fan
, and
X.
Huang
,
J. Chem. Phys.
149
,
072337
(
2018
).
37.
A.
Jain
and
G.
Stock
,
J. Chem. Theory Comput.
8
,
3810
(
2012
).
38.
A.
Jain
and
G.
Stock
,
J. Phys. Chem. B
118
,
7750
(
2014
).
39.
G.
Hummer
and
A.
Szabo
,
J. Phys. Chem. B
119
,
9029
(
2014
).
40.
C.
Schütte
and
W.
Huisinga
,
Biomolecular Conformations can be Identified as Metastable Sets of Molecular Dynamics
(
Elsevier
,
2003
).
41.
N.
Djurdjevac
,
M.
Sarich
, and
C.
Schütte
,
Multiscale Model. Simul.
10
,
61
(
2012
).
42.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
43.
F. P.
Casey
,
J. J.
Waterfall
,
R. N.
Gutenkunst
,
C. R.
Myers
, and
J. P.
Sethna
,
Phys. Rev. E
78
,
046704
(
2008
).
44.
F.
Noé
and
F.
Nuske
,
Multiscale Model. Simul.
11
,
635
(
2013
).
45.
A.
Berezhkovskii
and
A.
Szabo
,
J. Chem. Phys.
121
,
9186
(
2004
).
46.
R.
Zwanzig
,
Annu. Rev. Phys. Chem.
16
,
67
(
1965
).
47.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
48.
A.
Szabo
,
K.
Schulten
, and
Z.
Schulten
,
J. Chem. Phys.
72
,
4350
(
1980
).
49.
A.
Perico
,
R.
Pratolongo
,
K. F.
Freed
,
R. W.
Pastor
, and
A.
Szabo
,
J. Chem. Phys.
98
,
564
(
1993
).
50.
D.
Bicout
and
A.
Szabo
,
J. Chem. Phys.
106
,
10292
(
1997
).
51.
J. L.
Skinner
and
P. G.
Wolynes
,
J. Chem. Phys.
69
,
2143
(
1978
).
52.
A.
Berezhkovskii
and
A.
Szabo
,
J. Chem. Phys.
122
,
014503
(
2005
).
53.
S. H.
Northrup
and
J. T.
Hynes
,
J. Chem. Phys.
69
,
5246
(
1978
).
54.
C. H.
Jensen
,
D.
Nerukh
, and
R. C.
Glen
,
AIP Conf. Proc.
940
,
150
157
(
2007
).
55.
C. D.
Meyer
, Jr.
,
Linear Algebra Appl.
22
,
41
(
1978
).
56.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kale
, and
K.
Schulten
,
J. Comput. Chem.
26
,
1781
1802
(
2005
).

Supplementary Material

You do not currently have access to this content.