The study of “rare event” dynamics can be challenging despite continuing advances in computer hardware. A wide variety of methods based on the master equation approach have been developed to tackle such problems, where the focus is on Markovian dynamics between appropriately defined states. In this contribution, we employ the discrete path sampling approach to characterize pathways and rates for an adenine-adenine RNA conformational switch. The underlying free energy landscape supports competing structures separated by relatively high barriers, with the two principal funnels leading to the major and minor conformations identified by NMR experiments. The interconversion time scale is predicted to be a few hundred seconds, consistent with the experimental lower bound estimates. We find that conformational switching occurs via stacked intermediates, through a sliding mechanism, in agreement with a previous simulation study. By retaining full dimensionality and avoiding low-dimensional projections, the mechanism can be described at an atomistic level of detail.

1.
A. M.
Mustoe
,
C. L.
Brooks
, and
H. M.
Al-Hashimi
, “
Hierarchy of RNA functional dynamics
,”
Annu. Rev. Biochem.
83
(
1
),
441
466
(
2014
).
2.
E. A.
Dethoff
,
J.
Chugh
,
A. M.
Mustoe
, and
H. M.
Al-Hashimi
, “
Functional complexity and regulation through RNA dynamics
,”
Nature
482
,
323
330
(
2012
).
3.
D.
Thirumalai
and
S. A.
Woodson
, “
Kinetics of folding of proteins and RNA
,”
Acc. Chem. Res.
29
(
9
),
433
439
(
1996
).
4.
D.
Thirumalai
and
C.
Hyeon
, “
RNA and protein folding: Common themes and variations
,”
Biochemistry
44
,
4957
4970
(
2005
).
5.
J.
Chin Lin
,
C.
Hyeon
, and
D.
Thirumalai
, “
RNA under tension: Folding landscapes, kinetic partitioning mechanism, and molecular tensegrity
,”
J. Phys. Chem. Lett.
3
(
23
),
3616
3625
(
2012
).
6.
A. E.
Garcia
and
D.
Paschek
, “
Simulation of the pressure and temperature folding/unfolding equilibrium of a small RNA hairpin
,”
J. Am. Chem. Soc.
130
(
3
),
815
817
(
2008
).
7.
A. A.
Chen
and
A. E.
Garcia
, “
High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
16820
16825
(
2013
).
8.
P.
Kührová
,
P.
Banáš
,
R. B.
Best
,
J.
Šponer
, and
M.
Otyepka
, “
Computer folding of RNA tetraloops? Are we there yet?
,”
J. Chem. Theory Comput.
9
(
4
),
2115
2125
(
2013
).
9.
S.
Haldar
,
P.
Kührová
,
P.
Banáš
,
V.
Spiwok
,
J.
Šponer
,
P.
Hobza
, and
M.
Otyepka
, “
Insights into stability and folding of GNRA and UNCG tetraloops revealed by microsecond molecular dynamics and well-tempered metadynamics
,”
J. Chem. Theory Comput.
11
(
8
),
3866
3877
(
2015
).
10.
S.
Bottaro
,
P.
Banáš
,
J.
Šponer
, and
G.
Bussi
, “
Free energy landscape of GAGA and UUCG RNA tetraloops
,”
J. Phys. Chem. Lett.
7
,
4032
4038
(
2016
).
11.
X.
Xue
,
W.
Yongjun
, and
L.
Zhihong
, “
Folding of SAM-II riboswitch explored by replica-exchange molecular dynamics simulation
,”
J. Theor. Biol.
365
,
265
269
(
2015
).
12.
Y.
Bian
,
J.
Zhang
,
J.
Wang
,
J.
Wang
, and
W.
Wang
, “
Free energy landscape and multiple folding pathways of an h-type RNA pseudoknot
,”
PLoS One
10
,
e0129089
(
2015
).
13.
N. V.
Buchete
and
G.
Hummer
, “
Peptide folding kinetics from replica exchange molecular dynamics
,”
Phys. Rev. E
77
,
030902
(
2008
).
14.
P.
Tiwary
and
M.
Parrinello
, “
From metadynamics to dynamics
,”
Phys. Rev. Lett.
111
,
230602
(
2013
).
15.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
North-Holland
,
Amsterdam
,
1981
).
16.
R. E.
Kunz
,
Dynamics of First-Order Phase Transitions
(
Deutsch
,
Thun
,
1995
).
17.
F.
Noé
and
S.
Fischer
, “
Transition networks for modeling the kinetics of conformational change in macromolecules
,”
Curr. Opin. Struct. Biol.
18
,
154
162
(
2008
).
18.
D.
Prada-Gracia
,
J.
Gómez-Gardenes
,
P.
Echenique
, and
F.
Fernando
, “
Exploring the free energy landscape: From dynamics to networks and back
,”
PLoS Comput. Biol.
5
,
e1000415
(
2009
).
19.
D. J.
Wales
, “
Energy landscapes: Some new horizons
,”
Curr. Opin. Struct. Biol.
20
,
3
10
(
2010
).
20.
R. S.
Berry
and
R.
Breitengraser-Kunz
, “
Topography and dynamics of multidimensional interatomic potential surfaces
,”
Phys. Rev. Lett.
74
,
3951
(
1995
).
21.
R. E.
Kunz
and
R. S.
Berry
,
J. Chem. Phys.
103
,
1904
(
1995
).
22.
B.
Kunz
,
R. S.
Berry
, and
T.
Astakhova
, “
Using clusters to relate topography and dynamics of multidimensional potentials
,”
Surf. Rev. Lett.
3
,
307
312
(
1996
).
23.
R. E.
Kunz
,
P.
Blaudeck
,
K. H.
Hoffmann
, and
R. S.
Berry
, “
Atomic clusters and nanoscale particles: From coarse-grained dynamics to optimized annealing schedules
,”
J. Chem. Phys.
108
,
2576
(
1998
).
24.
G.
Pinamonti
,
J.
Zhao
,
D. E.
Condon
,
F.
Paul
,
F.
Noé
,
D. H.
Turner
, and
G.
Bussi
, “
Predicting the kinetics of RNA oligonucleotides using Markov state models
,”
J. Chem. Theory Comput.
13
,
926
934
(
2017
).
25.
B. M.
Warfield
and
P. C.
Andersen
, “
Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state
,”
PLoS One
12
,
e0176229
(
2017
).
26.
D. J.
Wales
, “
Decoding the energy landscape: Extracting structure, dynamics and thermodynamics
,”
Phil. Trans. Roy. Soc. A
370
,
2877
2899
(
2012
).
27.
J. A.
Joseph
,
K.
Rder
,
D.
Chakraborty
,
R. G.
Mantell
, and
D. J.
Wales
, “
Exploring biomolecular energy landscapes
,”
Chem. Commun.
53
,
6974
6988
(
2017
).
28.
C.
Schütte
,
A.
Fischer
,
W.
Huisinga
, and
P.
Deuflhard
, “
A direct approach to conformational dynamics based on hybrid Monte Carlo
,”
J. Comput. Phys.
151
(
1
),
146
168
(
1999
).
29.
M.
Shirts
and
V. S.
Pande
, “
Screen savers of the world unite!
,”
Science
290
(
5498
),
1903
1904
(
2000
).
30.
N.
Singhal
,
C. D.
Snow
, and
V. S.
Pande
, “
Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin
,”
J. Chem. Phys.
121
,
415
425
(
2004
).
31.
W. C.
Swope
,
J. W.
Pitera
, and
F.
Suits
, “
Describing protein folding kinetics by molecular dynamics simulations. I. Theory
,”
J. Phys. Chem. B
108
,
6571
6581
(
2004
).
32.
J. D.
Chodera
,
K. A.
Dill
,
N.
Singhal
,
V. S.
Pande
,
W. C.
Swope
, and
J. W.
Pitera
, “
Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics
,”
J. Chem. Phys.
126
,
155101
(
2007
).
33.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
, “
Everything you wanted to know about Markov state models but were afraid to ask
,”
Methods
52
,
99
105
(
2010
).
34.
J. H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schutte
, and
F.
Nóe
, “
Markov models of molecular kinetics: Generation and validation
,”
J. Chem. Phys.
134
,
174105
(
2011
).
35.
B. E.
Husic
and
V. S.
Pande
, “
Markov state models: From an art to a science
,”
J. Am. Chem. Soc.
140
(
7
),
2386
2396
(
2018
).
36.
G. A.
Huber
and
S.
Kim
, “
Weighted-ensemble Brownian dynamics simulations for protein association reactions
,”
Biophys. J.
70
,
97
110
(
1996
).
37.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
, “
Transition path sampling and the calculation of rate constants
,”
J. Chem. Phys.
108
,
1964
(
1998
).
38.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
, “
Transition path sampling: Throwing ropes over rough mountain passes, in the dark
,”
Annu. Rev. Phys. Chem.
53
,
291
318
(
2002
).
39.
T. S.
van Erp
,
D.
Moroni
, and
P. G.
Bolhuis
, “
A novel path sampling method for the calculation of rate constants
,”
J. Chem. Phys.
118
,
7762
7774
(
2003
).
40.
A. K.
Faradjian
and
R.
Elber
, “
Computing time scales from reaction coordinates by milestoning
,”
J. Chem. Phys.
120
,
10880
10889
(
2004
).
41.
A. M. A.
West
,
R.
Elber
, and
D.
Shalloway
, “
Extending molecular dynamics time scales with milestoning: Example of complex kinetics in a solvated peptide
,”
J. Chem. Phys.
126
,
145104
(
2007
).
42.
G.
Bussi
,
F. L.
Gervasio
,
A.
Laio
, and
M.
Parrinello
, “
Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics
,”
J. Am. Chem. Soc.
128
,
13435
13441
(
2006
).
43.
R. J.
Allen
,
D.
Frenkel
, and
P. R. t.
Wolde
, “
Simulating rare events in equilibrium or nonequilibrium stochastic systems
,”
J. Chem. Phys.
124
,
024102
(
2006
).
44.
E.
Vanden-Eijnden
,
M.
Venturoli
,
G.
Ciccotti
, and
R.
Elber
, “
On the assumptions underlying milestoning
,”
J. Chem. Phys.
129
,
174102
(
2008
).
45.
K.
Kuczera
,
G. S.
Jas
, and
R.
Elber
, “
Kinetics of helix unfolding: Molecular dynamics simulations with milestoning
,”
J. Phys. Chem. A
113
,
7461
7473
(
2009
).
46.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
, “
The ‘weighted ensemble’ path sampling method is statistically exact for a broad class of stochastic processes and binning procedures
,”
J. Chem. Phys.
132
,
054107
(
2010
).
47.
E.
Vanden-Eijnden
and
M.
Venturoli
, “
Markovian milestoning with Voronoi tessellations
,”
J. Chem. Phys.
130
,
194101
(
2009
).
48.
R.
Elber
,
J.
Bello-Rivas
,
P.
Ma
,
A.
Cardenas
, and
A.
Fathizadeh
, “
Calculating iso-committor surfaces as optimal reaction coordinates with milestoning
,”
Entropy
19
(
5
),
219
(
2017
).
49.
J. N.
Murrell
and
K. J.
Laidler
, “
Symmetries of activated complexes
,”
Trans. Faraday Soc.
64
,
371
377
(
1968
).
50.
D. J.
Wales
, “
Discrete path sampling
,”
Mol. Phys.
100
,
3285
3305
(
2002
).
51.
D. J.
Wales
, “
Some further applications of discrete path sampling to cluster isomerization
,”
Mol. Phys.
102
,
891
908
(
2004
).
52.
D.
Chakraborty
,
R.
Collepardo-Guevara
, and
D. J.
Wales
, “
Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins
,”
J. Am. Chem. Soc.
136
(
52
),
18052
18061
(
2014
).
53.
D.
Chakraborty
and
D. J.
Wales
, “
Probing helical transitions in a DNA duplex
,”
Phys. Chem. Chem. Phys.
19
(
1
),
878
892
(
2016
).
54.
D.
Chakraborty
and
D. J.
Wales
, “
Energy landscape and pathways for transitions between Watson-Crick and Hoogsteen base pairing in DNA
,”
J. Phys. Chem. Lett.
9
,
229
241
(
2018
).
55.
I.
Yildirim
,
D.
Chakraborty
,
M.
Disney
,
D. J.
Wales
, and
G. C.
Schatz
, “
Computational investigation of RNA cug repeats responsible for myotonic dystrophy I
,”
J. Chem. Theory Comput.
11
,
4943
4958
(
2015
).
56.
T.
Cragnolini
,
D.
Chakraborty
,
J.
Šponer
,
P.
Derreumaux
,
S.
Pasquali
, and
D. J.
Wales
, “
Multifunctional energy landscape for a DNA G-quadruplex: An evolved molecular switch
,”
J. Chem. Phys.
147
,
152715
(
2017
).
57.
J. S.
Klimavicz
,
K.
Röder
, and
D. J.
Wales
, “
Energy landscapes of mini-dumbbell DNA octanucleotides
,”
J. Chem. Theory Comput.
14
,
3870
3876
(
2018
).
58.
N. B.
Leontis
and
E.
Westhof
, “
Geometric nomenclature and classification of RNA base pairs
,”
RNA
7
,
499
512
(
2001
).
59.
G.
Chen
,
S. D.
Kennedy
,
J.
Qiao
,
T. R.
Krugh
, and
D. H.
Turner
, “
An alternating sheared AA pair and elements of stability for a single sheared purine-purine pair flanked by sheared GA pairs in RNA
,”
Biochemistry
45
,
6889
6903
(
2006
).
60.
K. P.
Van Nostrand
,
S. D.
Kennedy
,
D. H.
Turner
, and
D. H.
Mathews
, “
Molecular mechanics investigation of an adenine-adenine non-canonical pair conformational change
,”
J. Chem. Theory Comput.
7
,
3779
3792
(
2011
).
61.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jònsson
, “
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
,
9901
9904
(
2000
).
62.
G.
Henkelman
and
H.
Jónsson
, “
Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
,”
J. Chem. Phys.
113
,
9978
9985
(
2000
).
63.
E.
Malolepsza
,
B.
Strodel
,
M.
Khalili
,
S.
Trygubenko
,
S. N.
Fejer
, and
D. J.
Wales
, “
Symmetrization of the AMBER and CHARMM force fields
,”
J. Comput. Chem.
31
(
7
),
1402
1409
(
2010
).
64.
A.
Pérez
,
I.
Marchán
,
D.
Svozil
,
J.
Šponer
,
T. E.
Cheatham
,
C. A.
Laughton
, and
M.
Orozco
, “
Refinement of the amber force field for nucleic acids: Improving the description of α/γ conformers
,”
Biophys. J.
92
(
11
),
3817
3829
(
2007
).
65.
M.
Zgarbová
,
M.
Otyepka
,
J.
Šponer
,
A.
Mládek
,
P.
Banáš
,
T. E.
Cheatham
, and
P.
Jurečka
, “
Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles
,”
J. Chem. Theory Comput.
7
(
9
),
2886
2902
(
2011
).
66.
A.
Onufriev
,
D.
Bashford
, and
D. A.
Case
, “
Exploring protein native states and large-scale conformational changes with a modified generalized born model
,”
Proteins
55
(
2
),
383
394
(
2004
).
67.
A.
Onufriev
,
D.
Bashford
, and
D. A.
Case
, “
Modification of the generalized Born model suitable for macromolecules
,”
J. Phys. Chem. B
104
,
3712
3720
(
2000
).
68.
J.
Srinivasan
,
M. W.
Trevathan
,
P.
Beroza
, and
D. A.
Case
, “
Application of a pairwise generalized Born model to proteins and nucleic acids: Inclusion of salt effects
,”
Theor. Chem. Acc.
101
,
426
434
(
1999
).
69.
A. W.
Gotz
,
M. J.
Williamson
,
D.
Xu
,
D.
Poole
,
S.
Le Grand
, and
R. C.
Walker
, “
Routine microsecond molecular dynamics simulations with AMBER on GPUs 1. Generalized born
,”
J. Chem. Theory Comput.
8
,
1542
1555
(
2012
).
70.
D. J.
Wales
,
Energy Landscapes
(
Cambridge University Press
,
UK
,
2003
).
71.
D.
Liu
and
J.
Nocedal
, “
On the limited memory method for large scale optimization
,”
Math. Program.
45
,
503
528
(
1989
).
72.
S. A.
Trygubenko
and
D. J.
Wales
, “
A doubly nudged elastic band method for finding transition states
,”
J. Chem. Phys.
120
,
2082
2094
(
2004
).
73.
L. J.
Munro
and
D. J.
Wales
, “
Defect migration in crystalline silicon
,”
Phys. Rev. B
59
,
3969
3980
(
1999
).
74.
Y.
Zheng
,
P.
Xiao
, and
G.
Henkelman
, “
Unification of algorithms for minimum mode optimization
,”
J. Chem. Phys.
140
,
044115
(
2014
).
75.
D. J.
Wales
, “
OPTIM: A program for geometry optimisation and pathway calculations
,” http://www-wales.ch.cam.ac.uk/software.html.
76.
D. A.
Case
,
T. A.
Darden
,
T. E.
Cheatham
,
C. L.
Simmerling
,
J.
Wang
,
R. E.
Duke
,
R.
Luo
,
R. C.
Walker
,
W.
Zhang
,
K. M.
Merz
,
B.
Roberts
,
S.
Hayik
,
A.
Roitberg
,
G.
Seabra
,
J.
Swails
,
A. W.
Goetz
, and
I.
Kolossváry
, AMBER 9,
2006
.
77.
D. J.
Wales
, “
PATHSAMPLE: A program for generating connected stationary point databases and extracting global kinetics
,” http://www-wales.ch.cam.ac.uk/software.html.
78.
J. M.
Carr
,
S. A.
Trygubenko
, and
D. J.
Wales
, “
Finding pathways between distant local minima
,”
J. Chem. Phys.
122
,
234903
(
2005
).
79.
B.
Strodel
,
C. S.
Whittleston
, and
D. J.
Wales
, “
Thermodynamics and kinetics of aggregation for the GNNQQNY peptide
,”
J. Am. Chem. Soc.
129
,
16005
16014
(
2007
).
80.
D. J.
Wales
,
J. M.
Carr
,
M.
Khalili
,
V. K.
de Souza
,
B.
Strodel
, and
C. S.
Whittleston
, “
Pathways and rates for structural transformations of peptides and proteins
,” in
Proteins: Energy, Heat and Signal Flow, Computation in Chemistry
(
CRC Press
,
2009
), p.
315
.
81.
J. M.
Carr
and
D. J.
Wales
, “
Folding pathways and rates for the three-stranded β-sheet peptide Beta3s using discrete path sampling
,”
J. Phys. Chem. B
112
,
8760
8769
(
2008
).
82.
O. M.
Becker
and
M.
Karplus
, “
The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics
,”
J. Chem. Phys.
106
,
1495
1517
(
1997
).
83.
D. J.
Wales
,
M. A.
Miller
, and
T. R.
Walsh
, “
Archetypal energy landscapes
,”
Nature
394
,
758
760
(
1998
).
84.
S. V.
Krivov
and
M.
Karplus
, “
Free energy disconnectivity graphs: Application to peptide models
,”
J. Chem. Phys.
117
,
10894
10903
(
2002
).
85.
S. V.
Krivov
and
M.
Karplus
, “
Hidden complexity of free energy surfaces for peptide (protein) folding
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
14766
14770
(
2004
).
86.
Y.
Chebaro
,
A. J.
Ballard
,
D.
Chakraborty
, and
D. J.
Wales
, “
Intrinsically disordered energy landscapes
,”
Sci. Rep.
5
,
10386
(
2015
).
87.
K.
Röder
and
D. J.
Wales
, “
Transforming the energy landscape of a coiled-coil peptide via point mutations
,”
J. Chem. Theory Comput.
13
,
1468
1477
(
2017
).
88.
J. P.
Neirotti
,
F.
Calvo
,
D. L.
Freeman
, and
J. D.
Doll
, “
Phase changes in 38 atom Lennard Jones clusters. I. A parallel tempering study in the canonical ensemble
,”
J. Chem. Phys.
112
,
10340
10349
(
2000
).
89.
J. P. K.
Doye
,
M. A.
Miller
, and
D. J.
Wales
, “
The double-funnel energy landscape of the 38-atom Lennard-Jones cluster
,”
J. Chem. Phys.
110
,
6896
6906
(
1999
).
90.
D. J.
Wales
, “
Calculating rate constants and committor probabilities for transition networks by graph transformation
,”
J. Chem. Phys.
130
,
204111
(
2009
).
91.
R. S.
MacKay
and
J. D.
Robinson
, “
Aggregation of Markov flows. I. Theory
,”
Philos. Trans. R. Soc., A
376
(
2118
),
20170232
(
2018
).
92.
I.
Yildirim
,
S. D.
Kennedy
,
H. A.
Stern
,
J. M.
Hart
,
R.
Kierzek
, and
D. H.
Turner
, “
Revision of AMBER torsional parameters for RNA improves free energy predictions for tetramer duplexes with GC and iGiC base pairs
,”
J. Chem. Theory Comput.
8
,
172
181
(
2012
).
93.
A. H.
Aytenfisu
,
A.
Spasic
,
A.
Grossfield
,
H. A.
Stern
, and
D. H.
Turner
, “
Revised RNA dihedral parameters for the AMBER force field improve RNA molecular dynamics
,”
J. Chem. Theory Comput.
13
,
900
915
(
2017
).
94.
A.
Gil-Ley
,
S.
Bottaro
, and
G.
Bussi
, “
Empirical corrections to the AMBER RNA force field with target metadynamics
,”
J. Chem. Theory Comput.
12
,
2790
2798
(
2016
).
95.
A.
Cesari
,
A.
Gil-ley
, and
G.
Bussi
, “
Combining simulations and solution experiments as a paradigm for RNA force field refinement
,”
J. Chem. Theory Comput.
12
,
6192
6200
(
2016
).
96.
D. J.
Wales
and
I.
Yildirim
, “
Improving computational predictions of single-stranded RNA tetramers with revised α/γ torsional parameters for the AMBER force field
,”
J. Phys. Chem. B
121
,
2989
2999
(
2017
).
97.
D.
Tan
,
S.
Piana
,
R. M.
Dirks
, and
D. E.
Shaw
, “
RNA force field with accuracy comparable to state-of-the-art protein force fields
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
E1346
E1355
(
2018
).
98.
J.
Šponer
,
G.
Bussi
,
M.
Krepl
,
P.
Baná Š
,
S.
Bottaro
,
R. A.
Cunha
,
A.
Gil-Ley
,
G.
Pinamonti
,
S.
Poblete
,
P.
Jurečka
,
N. G.
Walter
, and
M.
Otyepka
, “
RNA structural dynamics as captured by molecular simulations: A comprehensive overview
,”
Chem. Rev.
118
(
8
),
4177
4338
(
2018
).
99.
G. M.
Giambasu
,
D. M.
York
, and
D. A.
Case
, “
Structural fidelity and NMR relaxation analysis in a prototype RNA hairpin
,”
RNA
21
,
963
974
(
2015
).
100.
N. A.
Denesyuk
and
D.
Thirumalai
, “
How do metal ions direct ribozyme folding?
,”
Nat. Chem.
7
,
793
801
(
2015
).
101.
M. R.
Hoare
and
J. J.
McInnes
, “
Statistical mechanics and morphology of very small atomic clusters
,”
Faraday Discuss. Chem. Soc.
61
,
12
24
(
1976
).
102.
M. R.
Hoare
,
Advances in Chemical Physics
(
John Wiley & Sons
,
USA
,
1979
), Vol. 40, pp.
49
129
.
103.
J. M.
Carr
and
D. J.
Wales
, “
The energy landscape as a computational tool
,” in
Latest Advances in Atomic Cluster Collisions: Structure and Dynamics from the Nuclear to the Biological Scale
, edited by
J.-P.
Connerade
and
A.
Solov’yov
(
Imperial College Press
,
London
,
2008
), pp.
321
330
.
104.
V. M.
Jiménez
and
A.
Marzal
, “
Computing the k shortest paths: A new algorithm and an experimental comparison
,” in
Algorithm Engineering: 3rd International Workshop, WAE’99, London, UK, July 1999
, edited by
J. S.
Vitter
and
C. D.
Zaroliagis
(
Springer Berlin/Heidelberg
,
1999
), Vol. 1668, pp.
15
29
.
105.
J. M.
Carr
and
D. J.
Wales
, “
Refined kinetic transition networks for the GB1 hairpin peptide
,”
Phys. Chem. Chem. Phys.
11
,
3341
3354
(
2009
).
106.
J. D.
Stevenson
and
D. J.
Wales
, “
Analysing kinetic transition networks for rare events
,”
J. Chem. Phys.
141
,
041104
(
2014
).
107.
D. J.
Wales
and
P.
Salamon
, “
Observation time scale, free-energy landscapes, and molecular symmetry
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
617
622
(
2014
).
You do not currently have access to this content.