We study, in this paper, the physical properties of water confined between two parallel graphene plates with different slit widths to understand the effects of confinement on the water structure and how bulk properties are reached as the water layer thickens. It was found that the microscopic structures of the interfacial liquid layer close to graphene vary with the slit width. Water tends to locate at the center of the six-membered ring of graphene planes to form triangular patterns, as found by others. The narrower the slit width is, the more pronounced this pattern is, except for the slit width of 9.5 Å, for which a well-defined two-layer structure of water forms. On the other hand, squared structures can be clearly seen in single snapshots at small (6.5 Å and 7.5 Å) but not large slit widths. Even at small slit widths, the square-like geometry is observed only when an average is taken for a short trajectory, and averaging over a long time yields a triangular pattern dictated by the graphene geometry. We estimate the length of time needed to observe two patterns, respectively. We also used the two-phase thermodynamic model to study the variation of entropy of confined water and found that at 8.5 Å, the entropy of confined water is larger than that of bulk water. The rotational entropy of confined water is higher than that of bulk water for all slit widths due to the reduction of the hydrogen bond in the confined space.
Skip Nav Destination
Article navigation
28 March 2019
Research Article|
March 25 2019
Structure of water confined between two parallel graphene plates
Special Collection:
Nonlinear Spectroscopy and Interfacial Structure and Dynamics
Xiaoxia Cai;
Xiaoxia Cai
Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University
, Beijing 100871, China
Search for other works by this author on:
Wen Jun Xie;
Wen Jun Xie
Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University
, Beijing 100871, China
Search for other works by this author on:
Ying Yang;
Ying Yang
Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University
, Beijing 100871, China
Search for other works by this author on:
Zhuoran Long;
Zhuoran Long
Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University
, Beijing 100871, China
Search for other works by this author on:
Jun Zhang;
Jun Zhang
Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University
, Beijing 100871, China
Search for other works by this author on:
Zhuoran Qiao;
Zhuoran Qiao
Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University
, Beijing 100871, China
Search for other works by this author on:
Lijiang Yang;
Lijiang Yang
Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University
, Beijing 100871, China
Search for other works by this author on:
Yi Qin Gao
Yi Qin Gao
a)
Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University
, Beijing 100871, China
a)Author to whom correspondence should be addressed: gaoyq@pku.edu.cn
Search for other works by this author on:
a)Author to whom correspondence should be addressed: gaoyq@pku.edu.cn
Note: This article is part of the Special Topic “Nonlinear spectroscopy and interfacial structure and dynamics” in J. Chem. Phys.
J. Chem. Phys. 150, 124703 (2019)
Article history
Received:
November 12 2018
Accepted:
February 24 2019
Citation
Xiaoxia Cai, Wen Jun Xie, Ying Yang, Zhuoran Long, Jun Zhang, Zhuoran Qiao, Lijiang Yang, Yi Qin Gao; Structure of water confined between two parallel graphene plates. J. Chem. Phys. 28 March 2019; 150 (12): 124703. https://doi.org/10.1063/1.5080788
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00