We have employed molecular dynamics simulations based on the TIP4P/2005 water model to investigate the local structural, dynamical, and dielectric properties of the two recently reported body-centered-cubic and face-centered-cubic plastic crystal phases of water. Our results reveal significant differences in the local orientational structure and rotational dynamics of water molecules for the two polymorphs. The probability distributions of trigonal and tetrahedral order parameters exhibit a multi-modal structure, implying the existence of significant local orientational heterogeneities, particularly in the face-centered-cubic phase. The calculated hydrogen bond statistics and dynamics provide further indications of the existence of a strongly heterogeneous and rapidly interconverting local orientational structural network in both polymorphs. We have observed a hindered molecular rotation, much more pronounced in the body-centered-cubic phase, which is reflected by the decay of the fourth-order Legendre reorientational correlation functions and angular Van Hove functions. Molecular rotation, however, is additionally hindered in the high-pressure liquid compared to the plastic crystal phase. The results obtained also reveal significant differences in the dielectric properties of the polymorphs due to the different dipolar orientational correlation characterizing each phase.

1.
D.
Eisenberg
and
W.
Kauzmann
,
The Structure and Properties of Water
(
Oxford University Press
,
New York
,
1969
).
2.
F.
Franks
,
Water: A Comprehensive Treatise
(
Plenum Press
,
New York
, (
1975
), Vol. 1.
3.
F.
Franks
,
Water a Matrix of Life
(
Royal Society of Chemistry
,
Cambridge
,
2000
).
4.
P.
Ball
,
Life’s Matrix. A Biography of Water
(
University of California Press
,
Berkeley
,
2001
).
5.
P.
Ball
,
Nature
452
,
291
(
2008
).
6.
G.
Tammann
,
Kristallisieren und Schmelzen
(
Johann Ambrosius Barth
,
Leipzig
,
1903
).
7.
G.
Tammann
,
Z. Phys. Chem.
68
,
205
(
1910
).
8.
P. W.
Bridgman
,
Proc. Am. Acad. Arts Sci.
47
,
441
(
1912
).
9.
P. W.
Bridgman
,
J. Chem. Phys.
5
,
964
(
1937
).
10.
E.
Whalley
,
D. W.
Davidson
, and
J. B. R.
Heath
,
J. Chem. Phys.
45
,
3976
(
1966
).
11.
E.
Whalley
,
J. B. R.
Heath
, and
D. W.
Davidson
,
J. Chem. Phys.
48
,
2362
(
1968
).
12.
S.
Kawada
,
J. Phys. Soc. Jpn.
32
,
1442
(
1972
).
13.
W. F.
Kuhs
,
J. L.
Finney
,
C.
Vettier
, and
D. V.
Bliss
,
J. Chem. Phys.
81
,
3612
(
1984
).
14.
A. F.
Goncharov
,
V. V.
Struzhkin
,
M. S.
Somayazulu
,
R. J.
Hemley
, and
H. K.
Mao
,
Science
273
,
218
(
1996
).
15.
E.
Wolanin
,
P.
Pruzan
,
J. C.
Chervin
,
B.
Canny
,
M.
Gauthier
,
D.
Häusermann
, and
M.
Hanfland
,
Phys. Rev. B
56
,
5781
(
1997
).
16.
C.
Lobban
,
J. L.
Finney
, and
W. F.
Kuhs
,
Nature
391
,
268
(
1998
).
17.
C. G.
Salzmann
,
P. G.
Radaelli
,
A.
Hallbrucker
,
E.
Mayer
, and
J. L.
Finney
,
Science
311
,
1758
(
2006
).
18.
M.
Somayazulu
,
J.
Shu
,
C.
Zha
,
A. F.
Goncharov
,
O.
Tschauner
,
H.
Mao
, and
R.
Hemley
,
J. Chem. Phys.
128
,
064510
(
2008
).
19.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
,
Nature
360
,
324
(
1992
).
20.
O.
Mishima
and
H. E.
Stanley
,
Nature
396
,
329
(
1998
).
21.
P. G.
Debenedetti
,
J. Phys.: Condens. Matter
15
,
R1669
(
2003
).
22.
E.
Sanz
,
C.
Vega
,
J. L. F.
Abascal
, and
L. G.
MacDowell
,
Phys. Rev. Lett.
92
,
255701
(
2004
).
23.
S.
Pipolo
,
M.
Salanne
,
G.
Ferlat
,
S.
Klotz
,
A. M.
Saitta
, and
F.
Pietrucci
,
Phys. Rev. Lett.
119
,
245701
(
2017
).
24.
V. F.
Petrenko
and
R. W.
Whitworth
,
Physics of Ice
(
Oxford University Press
,
Oxford
,
1999
).
25.
C. G.
Salzmann
,
P. G.
Radaelli
,
B.
Slater
, and
J. L.
Finney
,
Phys. Chem. Chem. Phys.
13
,
18468
(
2011
).
26.
J. C.
Palmer
,
F.
Martelli
,
Y.
Liu
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
Nature
510
,
385
(
2014
).
27.
Y.
Takii
,
K.
Koga
, and
H.
Tanaka
,
J. Chem. Phys.
128
,
204501
(
2008
).
28.
J. L.
Aragones
,
M. M.
Conde
,
E. G.
Noya
, and
C.
Vega
,
Phys. Chem. Chem. Phys.
11
,
543
(
2009
).
29.
J. L.
Aragones
and
C.
Vega
,
J. Chem. Phys.
130
,
244504
(
2009
).
30.
K.
Himoto
,
M.
Matsumoto
, and
H.
Tanaka
,
Phys. Chem. Chem. Phys.
16
,
5081
(
2014
).
31.
K.
Himoto
,
M.
Matsumoto
, and
H.
Tanaka
,
J. Phys. Soc. Jpn.
81
,
SA023
(
2012
).
32.
T.
Yagasaki
,
K.
Himoto
,
T.
Nakamura
,
M.
Matsumoto
, and
H.
Tanaka
,
Mol. Simul.
41
,
868
(
2015
).
33.
N. G.
Parsonage
and
L. A. K.
Sataveley
,
Disorder in Crystals
(
Clarendon
,
Oxford
,
1978
).
34.
D.
Dolan
,
M.
Knudson
,
C.
Hall
, and
C.
Deeney
,
Nat. Phys.
3
,
339
(
2007
).
35.
A. E.
Gleason
,
C. A.
Bolme
,
E.
Galtier
,
H. J.
Lee
,
E.
Granados
,
D. H.
Dolan
,
C. T.
Seagle
,
T.
Ao
,
S.
Ali
,
A.
Lazicki
,
D.
Swift
,
P.
Celliers
, and
W. L.
Mao
,
Phys. Rev. Lett.
119
,
025701
(
2017
).
36.
B.
Schwager
and
R.
Boehler
,
High Pressure Res.
28
,
431
(
2008
).
37.
A. G.
Khachaturyan
,
Theory of Structural Transformations in Solids
(
Dover Publications
,
New York
,
1983
).
38.
M.
Michl
,
Th.
Bauer
,
P.
Lunkenheimer
, and
A.
Loidl
,
Phys. Rev. Lett.
114
,
067601
(
2015
).
39.
M.
Michl
,
Th.
Bauer
,
P.
Lunkenheimer
, and
A.
Loidl
,
J. Chem. Phys.
144
,
114506
(
2016
).
40.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
41.
J. M.
Besson
,
Ph.
Pruzan
,
S.
Klotz
,
G.
Hamel
,
B.
Silvi
,
R. J.
Nelmes
,
J. S.
Loveday
,
R. M.
Wilson
, and
S.
Hull
,
Phys. Rev. B
49
,
12540
(
1994
).
42.
M.
Song
,
H.
Yamawaki
,
H.
Fujihisa
,
M.
Sakashita
, and
K.
Aoki
,
Phys. Rev. B
68
,
024108
(
2003
).
43.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
44.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
45.
W. G.
Hoover
,
Phys. Rev. A
34
,
2499
(
1986
).
46.
W.
Smith
and
T. R.
Forester
,
J. Mol. Graphics
14
,
136
(
1996
).
47.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
,
J. Comput. Chem.
30
,
2157
(
2009
).
48.
A. V.
Brukhno
,
J.
Grant
,
T. L.
Underwood
,
K.
Stratford
,
S. C.
Parker
,
J. A.
Purton
, and
N. B.
Wilding
,
Mol. Simul.
(published online,
2019
).
49.
A.
Idrissi
,
P.
Damay
, and
M.
Kiselev
,
Chem. Phys.
332
,
139
(
2007
).
50.
I.
Skarmoutsos
,
S.
Mossa
, and
J.
Samios
,
J. Chem. Phys.
145
,
154505
(
2016
).
51.
J.
Marti
,
J.
Padro
, and
E.
Guardia
,
J. Chem. Phys.
105
,
639
(
1996
).
52.
C.
Nieto-Draghi
,
J.
Bonet Avalos
, and
B.
Rousseau
,
J. Chem. Phys.
118
,
7954
(
2003
).
53.
M.
Matsumoto
,
J. Chem. Phys.
126
,
054503
(
2007
).
54.
J.
Marti
,
Phys. Rev. E
61
,
449
(
2000
).
55.
J.
Marti
,
J. Chem. Phys.
110
,
6876
(
1999
).
56.
I.
Skarmoutsos
and
E.
Guardia
,
J. Chem. Phys.
132
,
074502
(
2010
).
57.
I.
Skarmoutsos
,
E.
Guardia
, and
J.
Samios
,
J. Supercrit. Fluids
130
,
156
(
2017
).
58.
D. C.
Rapaport
,
Mol. Phys.
50
,
1151
(
1983
).
59.
R.
Shi
and
H.
Tanaka
,
J. Chem. Phys.
148
,
124503
(
2018
).
60.
J. R.
Errington
and
P. G.
Debenedetti
,
Nature
409
,
318
(
2001
).
61.
R. H.
Henchman
and
S. J.
Cockram
,
Faraday Discuss.
167
,
529
(
2013
).
62.
I.
Skarmoutsos
,
M.
Masia
, and
E.
Guardia
,
Chem. Phys. Lett.
648
,
102
(
2016
).
63.
E.
Guardia
,
I.
Skarmoutsos
, and
M.
Masia
,
J. Phys. Chem. B
119
,
8926
(
2015
).
64.
S.
Hanot
,
S.
Lyonnard
, and
S.
Mossa
,
Soft Matter
11
,
2469
(
2015
).
65.
H.
Liu
and
S. J.
Paddison
,
Phys. Chem. Chem. Phys.
18
,
11000
(
2016
).
66.
S.
Kämmerer
,
W.
Kob
, and
R.
Schilling
,
Phys. Rev. E
56
,
5450
(
1997
).
67.
A. J.
Moreno
,
S.-H.
Chong
,
W.
Kob
, and
F.
Sciortino
,
J. Chem. Phys.
123
,
204505
(
2005
).
68.
I.
Skarmoutsos
,
M.
Eddaoudi
, and
G.
Maurin
,
J. Phys. Chem. Lett.
9
,
3014
(
2018
).
69.
C. D.
de Michele
and
D.
Leporini
,
Phys. Rev. E
63
,
036702
(
2001
).
70.
M. G.
Mazza
,
N.
Giovambattista
,
F. W.
Starr
, and
H. E.
Stanley
,
Phys. Rev. Lett.
96
,
057803
(
2006
).
71.
L. E.
Bove
,
S.
Klotz
,
Th.
Strässle
,
M.
Koza
,
J.
Teixeira
, and
A. M.
Saitta
,
Phys. Rev. Lett.
111
,
185901
(
2013
).
72.
J.
Martí
,
E.
Guàrdia
, and
J. A.
Padró
,
J. Chem. Phys.
101
,
10883
(
1994
).
73.
J.
Martí
and
E.
Guàrdia
,
Phys. Rev. E
69
,
011502
(
2004
).
74.
D. C.
Elton
and
M.-V.
Fernández-Serra
,
J. Chem. Phys.
140
,
124504
(
2014
).
You do not currently have access to this content.